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ABSTRACT
This paper presents a POMDP-based dialogue system for
multimodal human-robot interaction (HRI). Our aim is to
exploit a dialogical paradigm to allow a natural and robust
interaction between the human and the robot. The proposed
dialogue system should improve the robustness and the flexi-
bility of the overall interactive system, including multimodal
fusion, interpretation, and decision-making. The dialogue is
represented as a Partially Observable Markov Decision Pro-
cess (POMDPs) to cast the inherent communication ambigu-
ity and noise into the dialogue model. POMDPs have been
used in spoken dialogue systems, mainly for tourist informa-
tion services, but their application to multimodal human-
robot interaction is novel. This paper presents the proposed
model for dialogue representation and the methodology used
to compute a dialogue strategy. The whole architecture has
been integrated on a mobile robot platform and has been
tested in a human-robot interaction scenario to assess the
overall performances with respect to baseline controllers.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Input devices and strategies, Interaction styles;
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Markov processes

Keywords
POMDP-based Dialogue Management; Multimodal HRI

1. INTRODUCTION
Multimodal communication is a key factor in human-robot

interaction making the robot companion able to adequately
interpret and react to human actions [1]. Many works have
shown how merging information, provided by different input
channels, increases the performance of system and allows a
natural communication experience [2, 3, 4, 5, 6, 7, 8]. This is
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also supported by studies in cognitive psychology [9]. In or-
der to cohabit, collaborate and share the common workspace
with humans, a robotic system needs the ability of recogniz-
ing human commands and activities, understanding user’s
intentions and deciding a rational interaction strategy, even
in presence of noise and low level of confidence. In this pa-
per, we propose to face these issues deploying a dialogical
paradigm in the context of multimodal human-robot interac-
tion. The main idea is that a natural and flexible interaction
between the human and the robot can be represented and
managed as a dialogue involving multiple modalities: speech,
gestures, moviments, body postures, emotions etc.. The in-
teractive, multimodal, dialogue flow should allow both the
human and the robotic system to interpret and disambiguate
contexts and intentions. Dialogue systems have been pro-
posed in HRI, mainly focussing on the speech modality [10,
11, 12] or considering it as the dominant one [13, 14]. In
contrast, we propose a dialogue system that exploits all the
available modalities to contextualize, interpret, and orches-
trate the overall interaction process.

For this purpose, we deploy a probabilistic approach. All
the approaches to dialogue management, but the probabilis-
tic one, assume the full observability of the dialogue state
which is realized by means of the fusion results. These ap-
proaches commonly overlook the handling of the uncertainty
[15]. As a result, complex error recovery procedures are
needed to handle misunderstanding or failures, while the as-
sociated policies tend to make the dialogue repetitive and to
increase the amount of human interventions. Furthermore,
the context-free fusion of multiple modalities could fail when
the inputs are contradictory, hence in this case the interpre-
tation should depend on the state of dialogue.

Representing the multimodal dialogue as a Partially Ob-
servable Markov Decision Process (POMDP) potentially pro-
vides an effective way to cast the uncertainty into the inter-
action model and to select the machine actions according to
the levels of confidence provided by the sensor fusion process.
The key idea is that system cannot know the real dialogue
state, hence it can keep a probability distribution over the
possible states.

In literature, POMDPs have been successfully used for
spoken dialogue system in HCI. For example, in [16], the
authors presents a framework, called Hidden Information
State, for handling uncertainty in spoken dialogue applica-
tions considering the case study of a tourist information sys-
tem. As for HRI, in [12] the authors propose a prototype
nursing home robot endowed with a POMDP-based spoken
dialogue system.
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Figure 1: Architecture for Multimodal Communica-
tion

In this paper, we present a novel POMDP-based dialogue
system for HRI that integrates multimodal communication,
probabilistic dialogue management, and contextual informa-
tion. The main problem of POMDPs is that computing an
exact solution for large POMDP is unfeasible [17], there-
fore we have developed an approximated solution which is
suitable for our domain. The dialogue system along with
the overall multimodal interaction framework has been inte-
grated on a mobile robot platform and tested in a human-
robot interaction scenario. In this context, we have evalu-
ated the dialogue system performance with respect to some
baselines controllers in terms of classification rates, dialogue
duration, and amount of interventions.
The paper is organized as follow: in Section 2 we intro-

duce the system architecture; in Section 3 we illustrate the
POMDP dialogue manager; in Section 4 we introduce a Pick-
and-Place testing scenario providing the evaluation results;
finally, in Section 5, we discuss conclusions and possible fu-
ture developments

2. MULTIMODAL ARCHITECTURE
The dialogue system presented in this paper is the upper

layer of a modular architecture for multimodal interaction
(Figure 1). The proposed architecture is consistent with the
abstract pattern proposed in [9].
The key feature of this architecture is that each layer pro-

vides the next one with a N-best list of possible interpre-
tations, in order to solve in cascade the ambiguities at the
upper layers of the system. The lower layer contains the
classifiers of the single modalities. Currently, gesture and
speech recognition are available. Speech recognition is per-
formed by the Google Speech Api, by sending the registra-
tion of human’s utterance to the server. The server returns
a list of possible phrases with the related confidence rates.
The semantic interpretations of each result are extracted by
a SVM-based classifier, which returns a list of user’s spo-
ken actions in a structured representation. Gesture recog-
nition is performed by analyzing data from a RGB-D cam-

era. The set of features is made up of 17 elements, which
includes the 3D coordinates of the body joints, the 3D an-
gles between the joints, and the hand status (open, closed,
pointing). The hand status is distinguished basing on the
recognition of different color blobs on a glove. The classifi-
cation process is modeled by Hidden Markov Models, which
have been trained using a training set of 1280 elements. The
result of the classification process, as for the speech case, is
again a list of gestures, each with its own score. The re-
sults provided by each single recognizer is the input of a
fusion engine. The fusion process is based on a late fusion
statistical approach and provides a context-free integration
of the multiple inputs [18]. The Fusion Engine temporally

aligns the monomodal results, establishing a temporal win-
dow in which all the inputs are parallel and contribute to
the fusion; then it performs the merging using a SVM clas-
sifier. Finally, the N-best list of fusion results becomes the
input of the multimodal dialogue manager presented in this
paper. It performs the coordination of the dialogue flow
and accomplishes the semantic interpretation of the observa-
tions/actions according to the context and the inner knowl-
edge. As previously said, when the single modalities are dis-
cordant, the fusion engine provides a low confident result, or
in the worst case, it straight returns the monomodal scores.
In this case, the dialogue manager has to choose the right
action, while keeping every possible hypotheses about user’s
intentions. Moreover, the dialogue manager deals with the
fusion of sequential inputs, which are not processed by the
fusion engine since they do not belong to the same tempo-
ral window. From this point of view, the dialogue manager
works as a long time scale fusion module. More details about
the classifiers employed in this work can be found in [19].

3. POMDP DIALOGUE MANAGER
Dialogue management is mainly conceived to deal with

some issues derived from the communication task. Due to
the nature of the task and the presence of noise on each
channel, it is possible to identify several sources of ambigu-

ity , like misunderstanding of human actions or commands,
multiple interpretations of a particular observation or non-
deterministic effects of a machine action. For these reasons,
our approach is to use a POMDP formalization of a dialogue
process. A dialogue is made up by multiple flows, which are
the possible branches of the conversation. A dialogue flow
contains the nodes, which represent the situations that may
occur, and defines the turns of the dialogue. Each node is
characterized by the observable user’s actions. Since the
machine does not know the user’s intention, at each time
step it could be in multiple situations, hence it should con-
sider multiple hypotheses about the current dialogue state.
Hence, the choice of the next machine action needs to take
into account this uncertainty.

The POMDPmodel of our system is a tuple (S,Am, T (·, ·, ·),
r(·, ·), O, Z(·, ·), b0). S = Sflow × Snode × Au is the set of
states. A state is a triple s =< sflow, snode, au > where
sflow is the ID of a dialogue flow, snode the ID of a node in
the dialogue flow and au is the last user action, such as a
monomodal act or a multimodal one. Am is the set of ma-
chine actions. The set contains the execution actions, which
are the interpretations of the user’s commands or activities,
and the control actions, which are useful to get confirmations
or decisions by the user. Since the effect of machine actions
are non-deterministic, T (s′, s, am) is the transition probabil-
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Figure 2: The POMDP dialogue model represented
as a Bayesian Network. The white circles are the
hidden variables, while gray circles denote the ob-
servations. The machine action am depends on the
current belief b.

ity P (s′|s, am) and R is the reward function R(s, am) ∈ R.
O is the set of the observations, which are N-best lists of
hypotheses about an user’s action o = [< a1

u, p1 > . . . <

an
u, pn >], where pi = P (ai

u|ō), a
i
u ∈ Au. The observations

are provided by fusion layer. Z(s, ō) is the observation prob-
ability P (o|s). Finally, b0 is the initial belief state.
The probability distribution among the states is called be-

lief state b, and b(s) is the probability of being in state s.
The system works as a classic POMDP: at each time step,
the system has a belief over states and executes an action
according to a policy. Then it goes in another hidden state,
and gets an observation. Finally, it updates the belief. The
factorization of the state allows some independence assump-
tions, which simplify the conditional dependencies that gov-
ern the belief update function. The transition probability is
the following:

T (s′, s, am) = P (s′s̄, am) ≈ P (a
′

us̄
′

flow, s
′

node)·

P (s
′

flow, s
′

nodes̄flow, snode, au, am), (1)

that is, the next user’s action a′

u depends only on the
next dialogue s′flow and the next nodes s′node, which are
determined by the current state < sflow, snode, au > and
the last machine action am. The observation probability is

assumed to be Z(s, ō) = P (o′|s′, am) ≈ P (o′|a
′

u), hence the
next observation depends on the next user’s action. The
Figure 2 shows the dependency graph. The above functions
implies the formulation of the belief update equation:

b(st+1
flow, s

t+1
node, a

t+1
u ) = k·P (ot+1

ā
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According to [20], by assuming that the prior probabil-
ity P (au) is constant for each user action, the observation
model could be derived for the results of the fusion engine
P (ō|au) = P (ō|au = ai

u) = k0 · P (ai
u|ō). In this way, the

constant k0 can be absorbed by the constant k in the belief
update function. By this, the quality of the classifier plays

Figure 3: Dialogue Flow Example. The node
1 is charactered by two possible observations
“Come Here” and “Close to Me”. The related ma-
chine action is to go near the user (Close To User).
This machine action triggers a transition to the node
2, in which machine expects that user asks to pick
something.

an important role, and it will become a variable of the eval-
uation tests. Furthermore, it is important to notice that the
multiplication of the observation model and the user action
model results in a re-estimation of the scores of N-best list
according to the current belief.

The dialogue models are provided by the developer as
graph-based specifications written in XML. An example of
a dialogue graph describing a simple interaction scenario is
shown in Figure 3. These dialogue models can be incremen-
tally added to the system. The XML syntax allows us to
link together the flows to obtain complex dialogue models.

3.1 Policy Search
Once the model is defined, the next step is to find a pol-

icy π, a function which associates a machine action to each
belief state. Usually, a dialogue strategy is evaluated in
term of number of turns required to complete user’s requests,
number of failures or control actions etc. [21]. We need to
find a trade-off between reliability in action execution and
usability: a machine that continously asks for agreement
is frustrating for the user, while a machine that tries to
guess the user intentions without any feedback from the user
can be dangerous. Since the probabilistic model is already
known, the policy is not learned, but foreordained by an it-
erative algorithm which maximize the expected discounted
value function over an infinite horizon T [22], i.e. V π∗

T (b) =

γ · maxa∈A[
∑

s∈S
b(s) · r(s, a) +

∫

V π∗

T−1(b
′) · P (b′|b, a) db′],

with V π∗

0 (b) = γ · maxa∈A[
∑

s∈S
b(s) · r(s, a)]. Although

computing a optimal policy is possible for small POMDPs
under the assumpion that the state space, the action space,
the space of observations and the planning horizon are fi-
nite, computing an exact optimal solution is notoriously in-
tractable when dealing with a real-world POMDP.

In spoken dialogue systems, the use of belief state compres-
sion for approximating POMDP policy is a common solution.
These are characterized by the structure of the summarized
space, for example deploying partitions and ontology trees
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[23], or using measurements of entropy [12]. Some remarks
on the nature of dialogue task led us to the design of an algo-
rithm for an approximated solution which works on a sum-
mary representation of a POMDP. This method is based on
both Augmented MDP and Point Based Value Iteration [22,
17]. The first observation is that when the robot has multi-
ple hypotheses and has to select an action, it could perform
either the most probable action or a control action. By this,
for the policy optimization, the action set can contain only
control actions along with one action called Do act, which
summarizes the execution of the most probable action. The
choice of a particular action will depend on some thresholds
of the uncertainty level, that will be discovered by algorithm.
The identification of such thresholds leads to another issue.
For the purpose of action selection, more than the dialogue
state, it matters the amount of confidence for each actual
hypotheses and for the next ones. For this reason, the belief
state could be summarized in a lower dimensional vector,
containing only a partial estimate of the information quan-
tity.
The policy optimization is therefore performed exploiting

a Summary Belief MDP
(

B̃, Ã, T̃ b, R̃b, b̃0

)

. Here, B̃ is the

set of states. A state b̃ is a triple generated from a belief
state b that contains the probability of the first hypotheses,
the probability of the second one, and a measure of compat-
ibility among the actions of all hypotheses. The third com-
ponent maps how many hypotheses share the action linked
to the top hypothesis to identify those situations in which
multiple dialogue states support the same machine action.
Ã is the set of machine actions and it contains all the con-
trol actions, for example request or confirmations, and the
“Do act” action, whose meaning is to perform the execution
action related to the top hypothesis. Typically, the control
actions are far less than execution actions, hence this choice
significantly reduces the action space. T̃ b is the belief tran-
sition and R̃b is the reward function. Since the function
T̃ b and R̃b are unknown, they need to be constructed by a
frequency statistic, as for the Augmented MDP algorithm.
Finally, b̃0 ∈ B̃ represents the initial state.
As we said above, the optimization algorithm is based on

a Point Based Value Iteration and Augmented MDP. The
first step of this is to build a set of points b̃1 . . . b̃n ∈ B ⊆ B̃

on which the policy will be optimized. The dimension of the
set and the smallest distance between points are key input
variables. The aim is to get a set representative enough of
the whole state space, where the small size or close clustering
can speed up the optimization process, but this can yield to
a poor quality policy. By contrast, a large set can cause the
opposite effects. Once the point-selection phase is finished, it

is necessary to learn, for each point, the function T̃ b
i and R̃i

b

through a sampling phase in which the dynamics of summary
space are estimated. Finally, the optimization algorithm is
performed to get a policy. The optimization is done only
for the points in the basket, bounding the complexity of the
algorithm. In the generated policy we have the list of the
summarized belief point b̃1 . . . b̃n and the relative machine
actions to perform. At runtime, the choice of the actions is
made by summarizing the current belief state and searching
the closest one in the list. The idea is that if an action is
good for a point, it might be good enough for the points
which are close.

Figure 4: Runtime action selection

4. CASE STUDY
To assess our system, we designed a test-bed scenario

which is an instance of a common Pick-Place-Carry situation.
The robot and the user are in a closed room, in which there
are red or yellow balls and numbered baskets. The user can
interact with the robot using gestures or body movements,
while the robot has a list of user dialogue models describing
possible flows of commands or movements. Each gesture can
be associated with one or more meanings, hence ambiguities
are possible. The meaning can be made clear, according
to the dialogue context, using the dialogue models provided
to the system. However, some user’s acts are not explicit
commands, therefore the system should understand the hu-
man’s intention and should support the human activity by
its planning and control skills.

4.1 Off ine test
The aim of these tests is to assess the performance of

computed policy compared with a greedy one and two hand-
crafted ones. Our working hypothesis is that dialogue can
improve the quality of the communication providing a trade-
off between the amount of requests and the correctness of
execution. For example, in some situations, the execution of
an action could increase the belief about a single hypothe-
sis without annoying the user. These kinds of behaviors are
usually complex to achieve using local strategies while policy
optimization can be a suitable method to generate them.

Test setup. The system is provided with 5 dialogue flows,
for a total of 68 states. The user’s actions are 12 and the
possible machine action are 16 plus 2 control actions, which
are Request, for asking a confirmation on the current most
probable action, and ChooseAmong2, for deciding between
the two most probable actions. The main feature of those
dialogue models is that many ambiguities may arise even in
the presence of high recognition rates. The test sessions are
composed of 100 interactions. The reward function r(s, am)
provides a positive reward (+10) for taking the correct ac-
tion or a large penalty (-20) otherwise. The control actions
result in little penalties. The reward for the ChooseAmong2

action results in a huge negative value to avoid the selection
of the action when there is only one hypothesis or when the
two most probable actions coincide.

During the tests, the misunderstanding rate of the classi-
fication result is modulated by the parameter λ. The confi-
dence c of selecting the user actions is drawn from an expo-

200



Machine action Condition Reward

execute(am) act(s) = am +10
execute(am) act(s) 6= am -20
request(am) act(s) = am -0.5
request(am) act(s) 6= am -3

chooseAmong2
(a1

m,a2
m)

a1
m 6= Null ∧ a2

m 6=
Null ∧ a1

m 6= a2
m

-1

chooseAmong2
(a1

m,a2
m)

a1
m = Null ∨ a2

m =
Null ∨ a1

m = a2
m

−∞

Table 1: Reward Function

Figure 5: Handcrafted conservative (up) and brave
policies (down).

nential distribution[24]. The slope of such function is deter-

mined by the parameter λ > 0, pλ(c) = λeλc

eλ−1
. The size of

B is 200 summary points, while the planning horizon and
the discount factor are respectively T = 100 and γ = 0.9.
In this way we give almost the same weight to all the future
actions in the horizon.
Test results. To assess the quality of the automated plan-

ning, we compared the performance of a greedy policy, two
handcrafted policies, and the optimized policy. The greedy
policy selects the action with the immediate highest expected
reward, i.e. V (b) = maxa∈A[

∑

s∈S b(s) · r(s, a)]. The first
handcrafted policy is conservative, whereas the second one
is more brave (see Figure 5). The conservative policy selects
the most probable action choice if the probability is greater
than 0.8, otherwise, if the probability is between 0.7 and
0.8 and it is supported (compatibility among the actions of
all the hypotheses greater than 0.8), it asks for a confirma-
tion; in the other cases it asks the user to select between the
best two actions (when at least two actions are available).
Instead, the brave policy selects the most probable action
with probability greater than 0.6, asks for a confirmation
when the probability is between 0.5 and 0.6 with compati-
bility greater than 0.8; otherwise it asks the user to choose
between the two best action candidates (when available).
The most evident result is that the average reward for the

four policies are almost the same, although the chart exhibits
a loss for POMDP-DM in the test with a high recognition
rate (Figure 6). In this situation, the policy optimization
causes an over-fitting, which results in bad exploration of
all belief space during the point selection phase. Neverthe-
less, by analyzing the actions performed, it comes out that
the POMDP-DM solution achieves this performance keeping
the number of control actions smaller than the other solu-
tions. Table 2 reports the average percentages of additional
time achieved by the policies with respect to the whole di-
alogue duration. The first and the second columns contain,
respectively, the average percentages of user actions due to
requests and due to bad interpretations. The values of the

Figure 6: Average reward for POMDP-DM and
baseline policies.

Requests Failures Total Amount

Greedy 18,5 3,5 22
POMDP-DM 9,25 5,25 14,5

HC1 26,25 1,25 27,5
HC2 17 4,25 21,25

Table 2: Average percentage of additional time.

third column are obtained as a sum of the former ones. The
greedy policy and the handcrafted ones handle the uncer-
tainty by asking for the user’s confirmation repeatedly in
so extending the duration of the dialogue. This behavior
is especially visible in low recognition rate situations. The
POMDP-DM solution can benefit of the horizon and a sta-
tistical knowledge about the effects of actions and the future
states. This makes the system more “courageous”, even if it
could lead to possible rejection from the user. However, the
rejection can be interpreted as an implicit request, since it
permits to resolve uncertainty in a shorter manner. The av-
erage rates of error is 5,25% , which is adequate for a system
with some degrees of autonomy, while, in contrast, it seems
that spending about 20% of dialogue in confirmations and
requests is too much (Table 2).

4.2 Online Test
The online test highlights the contribution of the context-

aware dialogue management in the communication task. Mainly,
dialogue models and N-best lists should allow the system
to recover correct user’s actions even if their ranks are low.
The contextual information should improve the recognition
performance and consequently reduce the duration of the
dialogue when compared with the one-best solution. The
trails have been conducted with 10 real users in order to
collect a preliminary evaluation of the system and to record
some suggestions useful for future enhancement.

Test setup. For the online test we have asked 10 people, 7
male and 3 female, to interact with the system. People were
provided with a Bluetooth microphone and with a colored
glove for hand status recognition. The task was to collect
10 balls and to place them somewhere.

The available gestures (depicted in Figure 7), the 9 possi-
ble speech commands, and the 2 composed patterns (”Pick”
+ Pointing, ”Place” + Pointing ) has been shown to the
testers, however the users had no information about preloaded
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Figure 7: Robotic platform and available gestures
with possible meanings

dialogue flows, which were 4 for a total of 40 states. The
policy has been computed using the same setting of the of-
fline tests. Since the gesture recognition rates are lower than
the speech ones, we have preferred to perform the test three
times: in the first place using only gestures, except for rejec-
tion performed through an utterance; the second time using
only speech; the third time using both these modalities.
Test results. Both Tables 3 and Table 4 report the results

of the trials. Those results aim to evaluate our approach
from two points of view: on the one hand we want to analyse
the contribution of the contextual information provided by
the dialogue flows in the command recognition task; on the
other hand, the aim is to estimate the quality of the dialogue
when the interaction modality changes.

The first columns contain the correct classification rates
of the user actions without the dialogue manager. A user
action is well-classified if it takes the highest placement in
the list provied by the fusion engine. The second columns
report the correct classification rates of user actions using
dialogue manager. As previously said, a user action can be
interpreted in multiple ways, hence the dialogue manager
has to assign the right semantic or it has to re-score the
N-best list. The third columns contain the amount of con-
trol actions executed by the machine, while in the fourth
columns the amount of the user actions performed during
the dialogue are showed. In particular, the last data are ob-
tained as the sum of the ”regular” actions and the ones due
to bad interpretations. Finally, the last column reports the
total amount of user actions. The gesture-based interaction
achieves worse results than speech and multimodal interac-
tion (Table 3). Due to changes of the light conditions and the
distance of the user from the robot, the classification rates
are affected by high inaccuracy. However, the dialogue man-

ager increases the recognitions rate of approximately 7% by
using the N-best hypotheses provided by the fusion engine.
When the fusion engine does not correctly rate an action
with the best score, usually that action takes a lower place-
ment. In this situation, the dialogue model has the effect
of rescaling the scores. In addition to this, the amount of
user’s interventions is high since the confidence on the user’s
actions is low and additional control actions are performed
to enhance the confidence about multiple user’s actions.

The test of the speech modality gets higher classification
rates compared with a gesture-based interaction. The aver-
age rate without dialogue manager is 82,84%, which rises up
to 85,47% using the dialogue manager. These results mainly
arises from the high performance of the Google ASR service.
The rare errors, caused by environmental noise, are well com-
pensated by the dialogue manager, which in this case contex-
tualizes utterances to the dialogue belief state rather than
correcting the classification scores. Nevertheless, the speech
communication lacks spatial information and this increases
the number of turns to complete a single user’s command.
On average, the number of utterances for each trial is 28,
which increases the average amount of total turns up to 33
when considering also the control actions. The multimodal
interaction performs better than all the other cases (Tables
4). The classification rates are higher than the previous
ones, and this supports the thesis that multiple inputs com-
plement each other, improving the overall performance of
the system, rather than generating conflicts and misunder-
standing. In addition, the average duration of the dialogues
is lower compared with single-modality trials, because the
dialogue manager requests mainly help to disambiguate the
meaning of a single action in relation with the current belief,
hence the amount of interventions decreases remarkably.

The average classification rate is comparable with the re-
sults shown in recent the works of Burger [2] and Wu [25],
which respectively reach 92% and 95% of correct interpreta-
tion scores for the multimodal communication. Finally, we
asked users to fill a questionnaire, in order to collect impres-
sions and advices for future development. The answer is a
score from one to five, or rather very bad=1, bad=2, suffi-

cent=3, good=4 and very good=5. The questions about ges-
ture naturalness, speech naturalness, and multimodal natu-
ralness aim to discover how much comfortable people feel to
communicate by gestures, voice or both of them. The speech
interaction and multimodal interaction achieve, respectively,
good and very good score, since they are more similar to
daily communication. The gestural commands seem artifi-
cial, however the work on gesture recognition should be con-
sidered as a first step towards human activity recognition.
From this point of view, in the next development the ma-
chine should infer the action to perform by observing what
the user is doing, moving from an active communication to
an indirect one. The questions about efficiency are to evalu-
ate how meaningful people consider their acts and how much
confidence they give to the robot interpretation. The aver-
age scores agree with the classification rates of the tests, and
for this reason the multimodal interaction gets the highest
score.

5. CONCLUSIONS
In this paper we presented a dialogue-based approach to

multimodal human-robot interaction (HRI). The aim was to
exploit the dialogue paradigm to enable a natural, flexible,
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Classification rate without DM Classification rate with DM Requests Gestures Turns

User 1 58,82% 64,70% 5 34 39
User 2 64,51% 70,96% 9 31 40
User 3 50% 61,76% 8 34 42
User 4 33,33% 45% 9 60 69
User 5 46% 56% 9 50 59
User 6 60% 62,85% 8 35 43
User 7 58,82% 61,76% 6 34 40
User 8 65,78% 71,05% 9 38 47
User 9 65,62% 68,75% 7 32 39
User 10 51,11% 60% 7 45 52
Average 55,40% 62,28% 7,7 39,3 47

Table 3: Results of only gesture test

Classification rate without DM Classification rate with DM Requests Gestures+ Utterances Turns

User 1 100% 100% 1 23 24
User 2 95,45% 95,45% 1 22 23
User 3 95,83% 95,83% 3 24 27
User 4 70,37% 74,07% 5 27 32
User 5 88,88% 88,88% 3 27 30
User 6 87,5% 87,5% 4 24 28
User 7 92% 92% 1 25 26
User 8 92,85% 92,85% 4 28 32
User 9 100% 100% 2 23 25
User 10 91,66% 91,66% 1 24 25
Average 91,45% 91,82% 2,5 24,7 27,2

Table 4: Results of multimodal test

Question Average
Score

Gesture naturalness 3,8
Gesture efficiency 3,4
Speech naturalness 4
Speech efficiency 4,2

Multimodal naturalness 4,8
Multimodal efficiency 4,4

Quality of dialogue (number
of turn, requests, failures)

4,5

Table 5: Result of the questionnaires

and robust interaction and communication between the hu-
man and the robot companion. The novelty of our approach
consists of using the dialogue manager to shape and to final-
ize the multimodal interpretation as well as to provide a
strategic control of the dialogical behaviour. The proposed
framework shows how multiple equally-weighted modalities,
probabilistic dialogue management, and context can be com-
bined to provide results in good performance and usabil-
ity of the robotic agent. The POMDP model can handle
such uncertainty by using prior knowledge provided by dia-
logue description and by tracking multiple hypotheses about
the dialogue state. Furthermore, it simplifies error recovery
without the need of designing complex mechanisms to han-
dle misunderstanding. Since computing an exact solution
for POMDP is intractable for problems with many states,
we worked on finding a suitable representation of the dia-
logue as a POMDP and on designing an algorithm to solve

it. The system evaluation illustrated that for our test cases
the policy computed with the summary POMDP achieves
better results comparing with baseline policies. In partic-
ular, it improves the quality of communication in terms of
duration, number of requests and confirmations, whereas“lo-
cal” policies tend to make the dialogue repetitive and to in-
crease the amount of human interventions. The probabilistic
approach also enhances the classification rate of the user’s
actions, since the hypotheses provided by the fusion engine
are reevaluated according to the current belief and the dia-
logue models. The approval rating from the users is good
and confirms that multimodal interaction is more comfort-
able and immediate than single-modality interaction, espe-
cially to complete the partial meanings of the single modal-
ities. The tests and the questionnaires have highlighted
some issues useful for future improvements. The bimodal
interaction has achieved good results, since speech and ges-
ture easily complement each other. However, it should be
analyzed whether adding further communication modalities
decreases performances or if the system can easily manage
the increasing ambiguity. As far as the dialogue design is
concerned, currently the probabilities of the dialogue mod-
els are provided by the dialogue designer, hence they could
be incorrect. A better solution is to learn the probabilities
from a corpus of dialogues, while leaving the models only
for high level description, maybe providing a GUI toolkit
along the lines of [26], or even to cast this uncertainty about
dialogue models in the POMDP. Bayes-Adaptive POMDP
models seem a suitable framework for this purpose, since
they assume that transitions and observation probabilities
are unknown or partially known [27]. Furthermore, the cur-
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rent policy optimization is performed offline and does not
change during the dialogue. Hence, it could be useful to
investigate the chance of enhancing the policy during the
execution and according to the user’s responses.
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