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ABSTRACT

We report on an analysis of feedback behavior in an Ac-
tive Listening Corpus as produced verbally, visually (head
movement) and bimodally. The behavior is modeled in an
embodied conversational agent and displayed in a conversa-
tion with a real human to human participants for perceptual
evaluation. Five strategies for the timing of backchannels
are compared: copying the timing of the original human lis-
tener, producing backchannels at randomly selected times,
producing backchannels according to high level timing distri-
butions relative to the interlocutor’s utterance and pauses,
or according to local entrainment to the interlocutors’ vow-
els, or according to both. Human observers judge that mod-
els with global timing distributions miss less opportunities
for backchanneling than random timing.

Categories and Subject Descriptors

H.5.2 [Information Systems]: Information Interfaces and
Presentation—User Interfaces

Keywords

embodied conversational agents; backchannels; entrainment

1. INTRODUCTION

1.1 Backchanneling for embodied conversational
agents

Embodied conversational agents (ECAs) offer great per-
spectives for improving human-computer interaction in vari-
ous tasks including information desk systems, personal assis-
tants and cooperative construction [21]. However, to maxi-
mize productivity and long time stability of spoken interac-
tion, attention has to be paid to the naturalness of commu-
nicative behavior displayed by the ECA. This includes many
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aspects, among them the ability of the ECA to generate ac-
tive listener behavior and produce proper feedback signals
[20, 23]. Verbal and visual feedback signals are paramount
to establishing rapport and updating information structure
(grounding). Those feedback signals that encourage the di-
alogue partner to continue speaking and smoothly, swiftly
and continually yield the turn are called backchannels. The
present work focuses on modeling backchanneling.

Truong et al. [31] have studied vocal, visual and bimodal
backchannels in their prosodic context as well as gaze pat-
tern effects on the presence and absence of listener feedback.
Since head nods are not interfering with the interlocutor’s
speech, one would expect that they are placed throughout
the discourse [31]. However, in the corpus material of spon-
taneous conversations in Dutch studied by Truong et al.
[31] they found that regardless of modality the probabil-
ity of feedback becomes simply higher as the interlocutor
utterance progresses. The presence of visual feedback is
closely linked with mutual gaze thus correlating with active
listening displays. Truong et al. [31] found that in face-
to-face communication the effect of pitch contours in cueing
backchannels is less significant than mutual gaze. Especially
visual backchannels (head gestures) were significantly more
often timed with mutual gaze. Their results also showed the
tendency for vocal backchannels to occur during interlocutor
pauses rather than interlocutor turns.

Several backchanneling strategies that depend on the spea-
ker’s pitch, pauses in the speaker’s speach, and gaze interac-
tion, were evaluated on an ECA in a previous study [28]. In
that study and a number of followup studies, it was found
that a strategy that just copies the timings of the origi-
nal listener is often perceived as more natural than a strat-
egy based on hand-designed rules [26, 27]. The studies also
suggest that random backcanneling according to an Erlang
distribution achieves a rather good perceptual naturalness
rating from human observers. The quantity of backchannels
was also found to be a significant factor influencing perceived
naturalness.

In another approach, backchannel behavior from several
individuals was collected to provide a backchannel signal
for an ECA by means of the so-called parasocial consensus

sampling [15]. Subsequently, data obtained from parasocial
consensus sampling was used to train a machine learner.
The features used for training were established in a previous
experiment using automatic feature selection. Backchannel-
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ing behavior produced after training received better ratings
from human subjects than a random strategy or one gen-
erating backchannels according to a hand-designed rule [14,
24].

There is also a report on using so-called iterative percep-

tual learning for appropriate timing of backchannels. This
method iterates between phases of learning backchannel op-
portunities from positive and negative examples by a stan-
dard machine learning technique. It harvests more positive
and negative examples by displaying the learned behavior
to human subjects and recording their evaluations on the
appropriateness of individual backchannels [11].

1.2 Backchannel timing and entrainment
The present work aims to complement earlier approaches

on generating backchannel timings by taking into account
the hypothesis that backchannel timings, like the timings of
many other events in natural dialogues, are strongly influ-
enced by mutual entrainment. By entrainment, we mean
the adaptation of phases and periods of oscillatory move-
ments between the speaker and the listener [32, 33]. En-
trainment is a mechanism of coordination and often emerges
as a property of oscillating systems. Entrainment phenom-
ena have been detected on various levels of inter-speaker co-
ordination, e.g. in synchronous speech reaching very high
temporal agreement [9], in the timing of overlapping speech
[37] or in postural swing [29], but also for various other group
interactions such as spontaneous rhythmic clapping [25].

Similarly, there have been many studies postulating that
listeners use their dialogue partners’ speech rhythm and time
their feedback responses or swift turn taking along with the
beat [8]. However they did not receive empirical support,
perhaps because they assumed a high level of strict period-
icity in the partner’s speech, and used averaging over inter-
vals as basis for prediction of the feedback response timing
[6, 2].

The entrainment approach does not necessitate interpolat-
ing from the rhythm of the dialogue partner in such a way
but uses the dynamics of prosodic events in speech as they
unfold to adapt its timing predictions. Along these lines, an
ECA has already been presented that moves according to
the rhythm of music as processed by entraining oscillators
[17]. Models that involve entrainment are useful in that they
can be helpful in the anticipation of turn ends or temporal
windows, for example for backchannels, while dynamically
adapting to speech tempo by period adaptation [16]. It has
been proposed that endogenous oscillators in the brains of
the speaker and the listener become mutually entrained on
the basis of the speaker’s rate of syllable production govern-
ing readiness for taking the turn at any given instant ([34],
see also recent results by [19]). According to that particular
model, readiness functions of the listener are counterphased
with that of the speaker, and entrainment continues briefly
after speech ceases. The hypotheses included in [34] have
not been extensively tested via a modeling approach. This
work aims at filling this gap by providing prosodic event
timings produced by the dialogue partner as input to an
abstract oscillator that in turn provides a timing prediction
for a listener reponse in the immediately following pause (see
section 3 for details). In summary, formal models of oscilla-
tor entrainment provide a good explanatory basis as well as
testable hypotheses constraining the temporal co-ordination
between speaker and listener.

In this work, we first analyse a corpus of Active Listening
in order to generate models of general timing distributions
of backchannels with respect to the interlocutor’s phrases.
Regularities with respect to these high level rhythmic struc-
tures can be considered as providing evidence of high level
entrainment to the interlocutor (with backchanneling being
phase-shifted as in the above discussed previous model [34]).
We consider several backchanneling modalities: visual (head
movement), verbal and bimodal. We complement these high
level timing distributionss with local timing predictions on a
smaller scale by entraining to the vocalic onsets of the inter-
locutor the listener is interacting with. We implement these
global and local timing strategies in an artificial agent and
evaluate the rapport, attention, timing accuracy and missed
backchannel opportunities (following [15]) in a study with
human participants.

2. EMPIRICAL DATA ON BACKCHANNEL-

ING

2.1 The Active Listening Corpus
Nine dialogues from the Active Listening Corpus (ALiCo)

were analysed to find global timing patterns of feedback re-
sponses in three modalities: verbal, visual (head movement)
and bimodal relative to the speaker’s utterances and pauses.
The analysis was carried out on a German corpus of face-
to-face conversations described in detail in [7]. The ran-
domly assigned dialogue partners were given two different
roles: the storyteller told two holiday stories to the dialogue
partner, the listener, who was instructed to listen actively
and participate in the dialogue. The corpus was collected
for the purposes of modeling entrainment in dialogue, mul-
timodal behavior of the listener (henceforth the Listener),
i.e., feedback signals, head and manual gesture, as well as
the prosody of the storyteller (henceforth the Speaker).

Audiovisual recordings were made in a sound-treated stu-
dio. Participants were positioned approximately three me-
ters apart to minimize crosstalk. Close talking high-quality
headset microphones were used.

All speech annotations were performed in Praat [4] inde-
pendently from the head gesture annotations. Short spoken
feedback expressions produced by the listener and the corre-
sponding feedback function labels were extracted unchanged
from annotations described in [7]. Listener contributions not
marked as feedback (listener turns) were excluded from the
present analysis.

The corpus is equipped with annotations of the Speaker’s
utterances and pauses labeled manually according to the
Rhythm and Pitch (RaP) system of prosodic annotation [5].
An utterance boundary was placed each time a minimally
perceptible disjuncture in the flow of speech was determined
(i.e., not at all acoustic pauses). The phrases delimited this
way approximately correspond to minor intonation phrases
in ToBI systems, according to [5]. The minimum pause du-
ration of 50msec resulting from our RaP based annotation
is comparable to automatic annotation of Interpausal Units
(IPUs) as used in e.g. [3].

Careful annotation of the acoustic signal makes it pos-
sible to approximate emergent rhythmic phenomena [12].
To represent the syllabic oscillator hypothesized for speech
production, vowel onsets were extracted semi-automatically
from the data [10, 1] and checked for accuracy. Next, experts
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Figure 1: Distribution of backchannels within
speaker utterances and subsequent pauses. The end
of the phrase is marked by a vertical dotted line.

annotated rhythmic prominence intervals, representing the
slower stress oscillator, where each prominent syllable is a
pulse on that level. The annotation was based on percep-
tual judgments of the signal, i.e.: a prominent syllable was
marked when a “beat” on a given syllable was actually per-
ceived and not when phonological rules dictated lexical or
sentence stress placement. The prosodic annotations of the
speaker served as input to the modeling of local timing for
the ECA.

Finally, the onsets of head nods and verbal backchannels
were also annotated. Annotation of head movement behav-
ior was performed in ELAN (http://tla.mpi.nl/tools/
tla-tools/elan/, see [35]) by close inspection of the muted
video. Perceptually coherent and continuous movements,
i.e. Head Gesture Units (HGUs) were segmented first (see
[36] for details). The structure of an HGU consists of move-
ment type and the number of movement cycles e.g. nod-
2+jerk-1. Four annotators segmented and labeled the lis-
tener HGUs independently. Each completed annotation was
checked for errors by two other annotators in rotation but no
inter-annotator agreement was calculated. However, an eval-
uation of the head annotation scheme and inter-annotator
consistency for a different spontaneous dialogue dataset can
be found in [22]. An inter-annotator agreement for HGUs
identification was found to be 77%. Duration agreement
yielded 79% in [22] indicating consistency among annota-
tors in marking gesture boundaries and event identification
with this scheme.

2.2 Analysis and results
First, we excluded all listener HGUs that overlapped with

listener turns (18.3%) to ensure we process feedback sig-
nals and not turn-taking. In total, 1578 head gesture units
were identified (Speaker N= 1001, Listener N=577) in 9 dia-
logues. Verbal feedback expressions produced by the listener
equaled 514 and the total number of speaker’s utterances
was 1049. The dialogues have a total length of 66 minutes
with a mean length of 7:30 min. (Min = 6:00, Max=8:50,
SD=1:05). On average, 15 HGUs per minute were produced
by the speaker. The listener’s feedback rate was 9 per minute
for head movements (bimodals included) and 8 per minute
for purely verbal responses.

We assume that in this type of dialogue the minimal unit
of analysis within which grounding is aimed to be achieved is
the storyteller’s utterance and the following pause. We stud-
ied feedback events relative to these two subsequent units.
Single overlaps between visual feedback and verbal feedback
that overlapped completely with either speaker’s utterance
or pause were included in the bimodal set. The visual set
contained head gestures whose onset fell into the unit under
consideration, i.e., if the gesture spanned several units, only
the first unit overlapping the gesture onset was included.

Forty percent of head gestures in the visual feedback data
start within the utterance but also overlap the following
pause. The median proportional position within the Speaker
phrase for these head gestures is 85%. We believe the skew
in the timing distribution of head gestures towards the end
of the Speaker’s phrase is caused by the doubly overlapping
gestures. We suggest that many head gestures that begin
at the very final portion of Speaker utterances are located
already at a position where potential turn-taking negotia-
tion is taking place between the interlocutors. The visual
responses taking place well within the turn function as con-
tinuers. We therefore look at the distribution of only those
visuals that completely fall into the phrase.

Recall that Truong et al. [31] concluded that regardless of
modality the probability of feedback is simply higher as the
interlocutor utterance progresses, also in case of head nods.
Figure 1 presents the distribution of the three modalities in
our Active Listening Corpus within an utterance and the
subsequent pause. What is clear is that in general, the ma-
jority of listener feedback indeed rises towards and coincides
with the ends of phrases and beginning of pauses, especially
feedback signals with a spoken component (verbals and bi-
modals). The head gesture data however is more uniformly
distributed when visual and bimodal feedback that does not
co-overlap the subsequent pause is included. The result sup-
ports the notion that some head gestures are placed through-
out the Speaker’s utterance when functioning as an unob-
trusive visual backchannel.

We subsequently utilize the resulting timing distributions
for the three modalities as timing models for an implemen-
tation in an ECA.

3. MODELING METHODS

3.1 Basic approach
From the results of the corpus analysis, the global backchan-

neling strategy displayed in Fig. 2 was designed: Visual
backchannels are broadly distributed within the speaker’s
utterances, wheras verbal backchannels are normally dis-
tributed around the end of utterances. For the purpose of
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Figure 2: A simplified approach towards rhythmic
timing of backchannels. The upper panel shows a
part of a dialog with three phrases. Phrases are dis-
played in yellow, vowel onsets in blue (lower spikes),
feet in black (higher spikes), the visual backchan-
nel distribution in green (trapezoid curve), and the
verbal backchannel distribution in red (Gaussian
curve). The lower panel shows schematic examples
of four of the backchanneling strategies explored
here: xx, random; hl, high level timing and local
entrainment; hx, high level timing only; xl, local en-
trainment only. Vocal backchannels are displayed
as long bars, whereas visual backchannels are dis-
played as short bars. The dotted lines indicate the
exact timings of rhythmic events derived from the
speaker. Note that strategies involving local en-
trainment move backchannels to these exact timings
as opposed to the random strategy. Strategies in-
volving high level distributions tend to move vocal
backchannels to the ends of the speaker’s phrases.

this experiment, bimodal utterances are treated just like ver-
bal backchannels. We are well aware that this is a strongly
simplified and idealized picture of BC timings, which can
also be positioned differently with respect to the various
rhythmic units for reasons of dialogue content or social in-
teractions not captured by our approach. Nevertheless, here
we explore whether these empirically derived rules of rhyth-
mic timing can already achieve a significant improvement
in terms of perceived naturalness of ECA backchanneling
behavior.

3.2 Backchannel Generation strategies

3.2.1 Random timing (xx strategy)

A sequence of BC timings is created by starting at the
end of the first IPU and creating a BC every 6.0 seconds un-
til the end of the dialogue is reached. The timings are then
perturbed randomly with a uniform distribution of ±2.0 sec-
onds each, and a type is determined randomly according to
the following probabilities that approximate data from the
corpus: head nod, 0.55; verbal BC, 0.35; bimodal BC, 0.1.
This timing method serves to ensure an approximately even
backchanneling behavior over coarse time scales.

In addition to the described backchannels, eye blinks are
also part of the ECA behavior. Their timings are generated
by starting at the second vowel onset and creating a prospec-
tive event every 5.0 seconds until the end of the dialogue is
reached. The timings are then perturbed randomly with a
uniform distribution of ±1.0 seconds each.

To make the behavior of the ECA look more natural, the
verbal utterance ’um’ was randomly chosen from among two
versions with slightly different prosody each time it was gen-
erated.

3.2.2 High level timing / local timing with entrain-
ment (hl strategy)

The random timings from section 3.2.1 are taken as in-
put, and the IPU whose center is closest to the prospective
BC timing is identified. Informed by results of the corpus
analysis, it is assumed that the onset times of verbal and
bimodal BCs are normally distributed around the end of
an IPU, with a standard deviation of 0.1 seconds. The vi-
sual backchannels, on the other hand, are assumed to be
distributed according to a distribution that plateaus in the
inner part of a given IPU.

Next, the local timing of a given BC in this strategy is de-
termined as follows: for visual backchannels, all vowel onsets
of the speaker within the given IPU are considered candi-
tates for a BC onset. One of them is chosen, with prob-
abilities being proportional to the height of the visual BC
probability distribution at the times of the respective candi-
dates. For verbal and bimodal BCs, all rhythmic prominence
onsets of the speaker within 5 standard deviations around
the end of the given IPU are considered candidates. One
of them is chosen, with probabilities being proportional to
the height of the normal distribution at the times of the
respective candidates. In the case of a bimodal BC, the vi-
sual component is placed on the vowel onset immediately
preceeding the rhythmic prominence onset where the verbal
component has been placed.

The above description assumes that there are vowel onsets
and rhythmic prominences before and after the end of the
IPU. But of course, there are none in a pause, so the rhyth-
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mic events within pauses are assumed to be derived from an
entrained oscillator. The particular technique chosen here
works as follows: for generating event timings within a given
pause, all rhythmic events from the respective level in the
preceding IPU are considered. If there are at least two of
them, the pause is filled by an abstract oscillator starting
with a phase of 0.0 at the last event within the IPU. The
period of the oscillator is calculated from a weighted mean of
the intervals between all successive events in the preceding
IPU, where the weights decay exponentially with distance
from the pause. Specifically, we set the weight of the ith
cycle before the pause to 0.9i, and normalize by dividing by
the sum of all weights. In reality, different oscillator models
will produce slightly different timings due to various non-
linearities, but here we assume that the differences are so
small that they can be disregarded if only short pauses are
bridged, as we do here.

The eyeblink timings generated by the random strategy
are adjusted by choosing the vowel onset of the speaker clos-
est to the preliminary BC.

3.2.3 High level timing only (hx strategy)

The timings from the previous section are randomly per-
turbed by ±0.05 seconds, which means that they are not
aligned with rhythmic events like vowel onsets and rhyth-
mic prominences any more, but are still where they would
be expected according to their global distribution within
phrases.

3.2.4 Local timing with entrainment only (xl strat-
egy)

For this strategy, the timings from the random strategy
(section 3.2.1) are adjusted such that they align with the
nearest rhythmic event (rhythmic prominences in the case
of verbal and bimodal backchannels, and vowel onsets in
the case of visual backchannels and eye blinks). High level
timing distributions are disregarded.

3.2.5 Copy timing (co strategy)

This strategy just uses the timings of head nods and ver-
bal backchannels recorded and annotated from the original
listener. As there is no annotation of eye blinks available,
these are generated in exactly the same way as described for
the high level timing / local timing with entrainment (hl)
strategy.

3.3 Evaluation
The evaluation procedure is similar to that of previous

work by other authors [15]. Three prerecorded dialogues
were selected from the corpus, and for each, five videos
were generated according to the backchanneling strategies
discussed in the previous section, each showing the original
speaker and the ECA (see Fig 3). While the original videos
had varying lengths, two clips of approximately 30 seconds
each were cut out from each video, and used for evaluation.
Any sequences where the original listener did anything be-
yond providing simple backchannels were excluded from se-
lection (sometimes, they took turns by asking a question or
completing the speakers’ sentences).

Each of the 37 participants saw all five BC strategies for
one conversation clip presented in random order, then the
next five, until all 30 clips were shown. The order of the
groups of five clips belonging to the same original clips was

Figure 3: The conversation scenario used for evalu-
ation.

also randomized. The participants were told in advance that
they were to evaluate the timings of the head nods and ’um’
utterances in each video, and that this was the only differ-
ence between the videos. After watching a video, the follow-
ing questions had to be answered on a scale between 1 and
7:

• How much rapport did you feel between the ECA and
the speaker while watching the video?

• Do you believe the ECA was listening carefully to the
speaker?

• How often do you think the ECA nodded or said ’um’
at inappropriate times?

• How often do you think the ECA missed opportunities
for nodding or saying ’um’?

After watching all the videos, participants also had to indi-
cate how difficult they found the task on a scale from 1 to
7.

4. RESULTS
We examined which backchanneling strategies were rated

better with respect to the four questions as compared to the
random timing strategy as a baseline. To achieve this goal,
a linear mixed model was fitted to the data for each ques-
tion using the statistics package R and the R library lme4.
These linear mixed models take the following additional fac-
tors into account: the order of presentation; the ID of the
original conversation video clip (six different values); and the
sum of all backchannels in a given synthesized clip (the copy
strategy often produced much more backchannels than the
other strategies, while the number of backchannels gener-
ated by the other strategies could vary slightly due to small
timing differences at the beginning or end of a clip). We also
entered the evaluating participants as the random effect into
all models. 1

1Random effects residual variance for perceived rapport is
1.5, (standard deviation = 1.23); for perceived attentiveness,
variance = 1.88 (sd = 1.4); for perceived wrong placements,
variance = 2.24 (sd = 1.5); and variance = 1.64 (sd = 1.3)
for perceived missed opportunities.
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4.1 Overall task difficulty
Participants reported a task difficulty of 3.8 on average

(sdev=1.4). A fair number reported that they found it dif-
ficult to concentrate on so many and so mutually similar
videos. There were also some complaints about the lack
of smiling in the ECA — something that we do not model
here, but which certainly would increase the perceived nat-
uralness.

4.2 Perceived rapport
The model fitted for rapport also takes gender of the par-

ticipant into account because exploration of other models
had shown that this is a significant factor for this question.
The model produced the following estimates for factors that
significantly improve perceived rapport as compared to the
baseline: presentation order (effect size b = 0.01, p = 0.009),
the copy strategy (b = 0.62, p < 0.001), female gender
(b = 0.66, p = 0.011). An increasing sum of backchannels
decreased perceived rapport (b = −0.04, p = 0.011). Many
of the video clips were also rated as significantly different
from the baseline clip. However, the timing strategies did
not differ significantly from the random strategy in terms of
perceived rapport.

4.3 Perceived attentiveness
The linear mixed model finds that the copy strategy sig-

nificantly improves perceived performance as compared to
the random backchanneling strategy (b = 0.67, p < 0.001),
whereas an increasing sum of backchannels slightly decreases
the rating (b = −0.04, p = 0.014). No other backchannel-
ing strategy differs significantly from the random strategy.
Again, some particular video clips got significantly different
ratings.

4.4 Perceived wrong placements
The only significant simple factor here is the sum of back-

channels, an increasing number of which also increases per-
ceived wrong timings (b = 0.51, p < 0.001). While the
values for the copy strategy are not significant (b = 0.69,
p = 0.25), there is a significant influence of the interaction
of this strategy and the number of backchannels (b = −0.32,
p = 0.010). All other strategies do not achieve a significant
change when considered alone or in combination with the
number of backchannels. Again, some of the different clips
got significantly different ratings.

4.5 Perceived missed opportunities
Here an increasing number of backchannels significantly

decreases perceived missed opportunities (b = −0.69, p <

0.001). The copy strategy (b = −3.30, p < 0.001), the
high/local timing (hl) strategy with entrainment (b = −1.73,
p < 0.001), and the high level timing only (hx) strategy (b =
−1.50, p = 0.001) significantly improve performance, while
the local timing only (xl) strategy does not perform signif-
icantly differently from the random strategy (b = −0.79,
p = 0.100). There are also significant negative influences
of the number of backchannels in interaction with the copy
(b = 0.56, p < 0.001), high/low level (hl) (b = 0.40, p <

0.001) and high level only (hx) (b = 0.34, p < 0.001) strate-
gies. This indicates that as the number of backchannels in-
creases, the advantages of those strategies over the random
strategies decreases.

5. DISCUSSION
We have shown that those strategies using empirically de-

rived global timing distributions are perceived as missing
less opportunities for backchanneling than a random strat-
egy. Effect sizes suggest that a strategy that combines high
level and local timing with entrainment improves the ratings
of missing less feedback opportunites more strongly than the
one based on high level timing only. We could not demon-
strate a positive effect of local timing alone over random
timing.

In line with previous studies, we find that the number of
backchannels influences all aspects of perceived backchan-
neling behavior strongly and significantly.

We also do not find a positive effect of high level timing
on other aspects of perceived backchanneling behavior such
as perceived attentiveness or rapport between the ECA and
the speaker. The copy strategy, on the other hand, does
perform significantly better on all aspects than the random
strategy.

It is posssible that advantages of low level entrainment of
backchannels to the speaker’s vowels could not be detected
because there were to many different strategies presented for
evaluation. Also, the variation of the sum of backchannels
across different video clips might have influenced the par-
ticipants’ ability to discern subtle timing effects. Therefore,
we plan to proceed by doing a simpler and more controlled
perceptual evaluation of local, low level timing with entrain-
ment in the future.

The timings for backchanneling have been generated of-
fline for this study. This is sufficient for studying user pref-
erences, but the ultimate goal is to produce backchannels
online. The strategies introduced here can be generated on-
line if two conditions are met. Firstly, speaker rhythms have
to be extracted online. Online extraction of vowel onsets has
been done before [38, 13]. Automatic prominence detection
can also be done online [30]. Secondly, rhythmic evens in the
future have to be predicted. In the context of the strategies
introduced here, this is necessary for predicting the length of
the phrase as well as for generating rhythmic timings in the
speaker’s pauses. Oscillators that entrain to the speaker’s
rhythm can be used for making such predictions [16].

The strategies introduced here do not perform as well as
a human strategy copied by the ECA. This is not surprising
given that the human can evaluate various semantic and ges-
tural cues that are not available in our framework. As stated
in the introduction, the strategies explored here are comple-
mentary to some previous approaches, which means they
could be combined to further enhance the performance. For
example, instead of generating bachchannels with approxi-
mately regular spacing on coarse time scales as done here,
the change in a speaker’s pitch, eye contact to the listener,
or keyword spotting could modify the probabilities of BC
generation [31, 18].
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