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ABSTRACT 
 
Video scene segmentation is a fundamental step for video 
summarization and browsing, which is a very promising 
application of multimedia analysis. There are two key 
elements, namely, boundary evaluation and boundary 
searching, in a scene segmentation algorithm. In this paper, 
we propose a novel boundary evaluation criterion, including 
the multiple normalized min-max cut scores, which consider 
not only neighboring but non-neighboring scene similarities 
with a memory-fading model, and the maximal cross-
boundary strict shot similarity, which considers both color 
and structure similarities. Dynamic programming with a 
heuristic search scheme is adopted to quickly find the global 
optimal scene boundary sequence. Moreover, a Monte Carlo 
method is adopted to improve the stability of the searching 
process. Experimental results on a dataset of 40 diversified 
videos have proven the algorithm efficient, robust, and 
superior to the existent methods. 
 

Index Terms—Scene segmentation, normalized min-
max cut, LDA, dynamic programming, heuristic search, 
Monte Carlo, video summarization, video browsing 
 

1. INTRODUCTION 
 
With the fast growing of amount and accessibility of video 
contents, video summarization and browsing techniques are 
becoming more and more important in real applications. A 
video scene consists of a group of semantically closely-
related consecutive shots. Scene is the essential video 
content unit and the most effective clue for fast video 
content understanding. For both of the usual video 
abstraction forms, i.e., key frame sequence and video skim, 
the main scenes of the video should be segmented and well-
represented in the results. Hence, video scene segmentation, 
or temporal shot grouping, is a fundamental step for video 
summarization and browsing. 

There have been many research efforts aiming for 
automatic video scene segmentation. The MCMC 
framework is introduced in [1]. However, because of some 
strong assumptions, parameters in the algorithm need to be 
tuned for different video types. An SVM-based sliding 

window boundary detection scheme is proposed in [2]. But 
the paper only exhibited experimental results on simulated 
data samples. Audio classification and speaker identification 
information is adopted in [3] for segmenting documentary 
films. Visual, audio, and textual clues are integrated in the 
framework of [4] to detect program changes in TV 
broadcast streams. Such approaches [3] [4] are only suitable 
for some specific tasks. In [5], the complex multi-cut 
problem of scene segmentation is simplified using a 
recursive shot similarity graph bi-partitioning method. Ref. 
[6] proposed a shot clustering and sequence alignment 
scheme, and reported better performance than [5]. For 
performance comparison, the latter two scene segmentation 
algorithms [5] [6] are implemented and tested in this paper. 

A scene segmentation algorithm has two key elements, 
namely, boundary evaluation and boundary searching. The 
evaluation part tells how likely an assumed scene boundary 
should be a real one from the pattern classification 
viewpoint. The searching part investigates all the possible 
boundary combinations in a certain order and selects the 
best scene boundary sequence as the result. In this paper, a 
novel scene evaluation criterion is proposed. Each possible 
scene boundary is evaluated using both the multiple 
normalized min-max cut scores, which consider not only 
neighboring but non-neighboring scene similarities with a 
memory-fading model, and the maximal cross-boundary 
strict shot similarity, which considers both color and 
structure similarities. Based on the scores and the similarity, 
an LDA classifier, which is obtained in a supervised 
learning manner, judges whether the scene boundary is a 
real one. Dynamic programming with a heuristic search 
scheme is adopted for fast global optimal boundary 
searching. Moreover, a Monte Carlo method is introduced 
to improve the stability of the searching process, i.e., 
dynamic programming is executed many times with random 
boundary evaluation thresholds, and the final boundaries are 
determined via voting. 

Comprehensive experiments were carried out on a 
dataset of 40 diversified videos. The 17-hour dataset 
contains about 660 scenes. As far as we know, this is the 
most complex scene segmentation dataset in the literature. 
In the experiments, the proposed algorithm proved its 
effectiveness and outperformed the existent methods [5] [6]. 
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Fig. 1. Part of a scene from the movie Spider Man II. 
Each shot is represented by a frame in it. The consecutive shots are 
numbered according to their temporal order. 
 

The rest of this paper is organized as follows. The 
scene boundary evaluation criterion is proposed in Section 2. 
The algorithm for finding all the boundaries is detailed in 
Section 3. Section 4 demonstrates experimental results of 
the different algorithms. Section 5 concludes the paper. 
 

2. SCENE BOUNDARY EVALUATION 
 
Generally, video scene segmentation is based on the shot 
change detection results. The schemes in [7] and [8] are 
integrated in this work as the shot change detector. Every 
detected shot boundary in the video is considered as a 
possible scene boundary, and need to be evaluated as a 
candidate. The novel evaluation criterion will be introduced 
in the sub-sections below. 
 
2.1. Multiple Normalized Min-max Cut Scores 
 
The basic principle of scene boundary evaluation is that the 
content should be quite similar inside a scene, and should 
have some obvious changes across a boundary.  

The graph partition model [9], which regards the shots 
in a video as connected vertices in a graph, transforms video 
segmentation problem into partitioning the graph into 
isolated parts. Although graph partition model has been 
adopted in [5], intra-scene similarity was not well exploited 
in the recursive bi-partitioning scheme. The min-max cut 
[10] is a graph partition criterion that characterizes intra-
scene similarity and inter-scene dissimilarity at the same 
time. However, it tends to partition the video into equal-
length scenes by its design. To solve the aforementioned 
problems, we propose multiple normalized min-max cut 
scores for scene boundary evaluation. 

Figure 1 shows some consecutive shots from one same 
scene in the movie Spider Man II. We can observe that, 
although the shots 12 – 14 (spider man thrown out through 
the roof and then fly back soon) are just a very short part of 
the whole scene, they share similar visual features and are 
quite dissimilar from other shots. 

 
Fig. 2. A simple video segmentation example. 

 
Considering only the closest neighboring scenes on 

both sides of the assumed boundary will result in over-
segmentation (before 12 and after 14 in Figure 1). Since the 
scene boundaries separate all the shots that locate on 
different sides of them, the relationships between shots in 
non-neighboring scenes (1-11 and 15-20) are also taken into 
account to avoid such over-segmentations. 

As is shown in Figure 2, suppose that a video has 4 
consecutive scenes a, b, c, and d, of which each consists of 
at least one shot. Then evaluation of the boundary 6 
(between b and c) is based on the multiple graph cut scores, 
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where constant v is the memory fading speed parameter. 
The function D() is defined as the distance between the last 
frame of the temporally former segment and the first frame 
of the latter one. The length weighted association function 
A() is defined as, 
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where si and sj represent the ith and jth shot in the video, 
respectively. SC() is the shot color similarity function. The 
function L() means the length of the segment. Since longer 
shots occupy larger portion in the scene than shorter ones, 
they should play a more important role in the computation 
of scene association. So, the association definition in (3) is a 
shot-length-weighted mean of the shot similarities. Note that 
it is normalized compared to that in min-max cut [10], 
which is positively correlated to the shot number in each 
scene and makes equal-length scenes favored. SC() is 
defined as, 
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where fm and fn are representative frames of si and sj, 
respectively. HC() means the 64-bin HSV (2 bits for each 
channel) histogram of the frame. The function I() means 
histogram intersection. 

For two shots that are far apart in the video, if the shots 
in-between are quite different from them, then it is natural 
to separate them into different scenes, no matter how similar 
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they are. Hence, the memory fading model is introduced in 
(2) so that the relationship (edge weights in the graph) 
between two assumed scenes becomes weaker as their 
temporal distance becomes larger. In our system, the 
memory fading parameter v is set to be 0.05 (1/second) 
through all experiments. In practice, since the total length of 
3 consecutive scenes must be relatively large, the graph cut 
in (2) is almost zero if the two scenes are more than 3 
boundaries apart. Therefore, at most 6 scenes around the 
boundary need to be considered in (1), and considering 4 
neighboring scenes is also acceptable in general applications. 
 
2.2. Maximal Cross-boundary Strict Shot Similarity 
 
In Figure 1, the color similarities among the shots are 
depicted in (4) using the global color histogram. It can be 
observed that some of them, such as 1, 16 and 20, share 
almost identical visual features. Besides (4), their similarity 
should contribute more in the boundary evaluation criterion, 
so that they are more likely to be grouped into one same 
scene. Thus, we propose the strict shot similarity, which 
should be large if and only if the two shots are very similar 
both in color and in structure, as, 
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where the strict shot similarity SS() is the minimum of strict 
similarities between their representative frames, which is 
defined as, 
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where each of the two frames is divided in to 4 * 4 regions. 
Every pair of corresponding regions in the two frames is 
compared. Hr

C() means the color histogram, as that in (4), of 
region r, Hr

S() means the R-HOG feature [11] of region r. 
Each frame is down-sampled to a size between 80 * 60 and 
160 * 120 before R-HOG feature extraction. It is obvious 
that a region pair will not contribute to the strict frame 
similarity if they are dissimilar either in color or in texture. 

To make the similarity measure more strict, and to 
emphasize the structure similarity, (5) is further tuned as, 
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Finally, the maximal cross-boundary strict shot 

similarity for boundary 6 in Figure 2 is defined as, 
( ) ( ) ( )[ ]jijiScsbs

ssDvssScbE
ji

,exp,max,
,

⋅−⋅′=′
≥≤

            (8) 

 
where the constant v and function D() are defined as in (2). 
 
2.3. Forming Evaluation Criterion 
 
In order to convert the multiple scores and the maximal 
similarity to an evaluation value for classification, they are 

 
Fig. 3. The flowchart of boundary sequence searching. 

 
concatenated into a feature vector, and a supervised learning 
is performed to find the projection p that best distinguishes 
the real scene boundaries from the false ones. Then, the 
simplest way of judging whether to accept an assumed 
boundary or not is to compare (9) with a fixed threshold. 
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The projection p is obtained via Linear Discriminant 

Analysis (LDA), which gives the best linear classification 
under Fisher criterion, as, 
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whereμ+ andΣ+ represent the mean and covariance of the 
feature vectors of positive samples, respectively; the 
counterpart two symbols represent those of the negative 
samples. Positive samples are generated using the scene 
boundary ground truth. Negative samples are simulated 
using randomly selected shot boundaries which are not real 
scene boundaries. 

Note that some non-linear classifiers, such as Support 
Vector Machine (SVM), may take the place of LDA to 
achieve a better projection p, if enough (for example, 
thousands of) positive samples are available for training. 
 

3. BOUNDARY SEQUENCE SEARCHING 
 
It can be seen from the definitions in Section 2 that the 
evaluation of one scene boundary is dependent on the 
positions of its neighbors. Hence, the proposed boundary 
sequence searching algorithm aims at finding the global 
optimum. The shot number in a scene varies greatly (from 
only 1 to over 100) in different cases. Compared with the 
fixed-length sliding window searching schemes [2] [6], 
which find every boundary with neighboring boundary 
positions unknown, the proposed algorithm is more robust 
to scene length variances. 

The flowchart of our algorithm is shown in Figure 3. 
Dynamic programming (DP) with a heuristic search scheme 
is proposed to quickly find the optimum in the huge 
searching space of possible boundary sequences, of which 
each consists of some shot boundaries in the video. During 
DP, each boundary case is evaluated using the LDA 
projection in (9) based on the shot similarity matrix. The DP 
is carried out for multiple times with random boundary 
evaluation thresholds. After each round, every boundary in 
the result sequence obtains a vote. The final result is 
determined by the vote numbers of the boundary candidates. 



 
Fig. 4. A simple DP searching tree example. 

 
3.1. Dynamic Programming 
 
Suppose the total shot number in a video is n (A common 
Hollywood movie has about 2000 shots.) then the total 
number of possible scene boundary combinations is 2n-1. To 
find the global optimal boundary sequence in the huge 
searching space is an NP-hard problem. This is why DP 
with a heuristic search scheme is proposed here. 

DP breaks the problem of finding the optimal sequence 
into recursive simpler searching steps. Since the boundary 
evaluation is dependent on its neighbors, at each step, one 
possible segment of the boundary sequence, instead of one 
single boundary candidate, is investigated. 

The simple searching tree of a 5-shot video is shown in 
figure 4. Each possible boundary sequence must start with 
boundary 0 and end with 5. There are totally 16 possible 
boundary sequences in the searching space. For example, a 
segment investigated in one DP step may be (2, 3, 5), and 
one of its possible preceding segments is (0, 2, 3). These 
two segments form a solution (0, 2, 3, 5) which divides the 
video into 3 segments (thick arrows in Figure 4) at 
boundary 2 and 3. 

The basic philosophy of the searching process is that, 
we hope to find as many as possible real boundaries; and in 
the case of same boundary number, we hope to find the 
most probable boundaries. 

The aim of each DP step is to find one best preceding 
segment. Denote a boundary sequence segment as (bp, bc, 
bn). A step of the proposed DP algorithm is described as 
follows. The whole process is performed via ascending 
looping for bn, bc, and bp. 
 
1) Find one/another valid preceding segment candidate 

(bf, bp, bc). If successful, go to 2); otherwise, go to 5). 
2) Compute the evaluation value as in (9) for bp in the 

boundary sequence. If the value is smaller than the 
threshold, go to 3); otherwise, go to 1). 

3) If (bp, bc, bn) currently has no preceding segment, 
record  (bf, bp, bc) as its preceding segment, then go to 
1); otherwise, go to 4). 

4) Compare (bf, bp, bc) with the current preceding 
segment of (bp, bc, bn). If (bf, bp, bc) is “better”, replace 
the current preceding segment. Go to 1). 

5) If (bp, bc, bn) has no preceding segment, set it as invalid; 
otherwise, set it as valid. Step finished. 

 
Fig. 5. Parameter selection for random thresholds. 

 
According to the aforementioned philosophy, the term 

“better” in 4) means larger preceding boundary number and 
smaller average of preceding evaluation values. 

After the whole DP process, the best (bp, bc, bn) with bn 
being the end boundary of the video can be found. Then, the 
optimal boundary sequence can be obtained via recursively 
retrieving the preceding segments. 

To further decrease the computational burden, a 
heuristic search scheme is proposed in our algorithm. For 
every bn, a temporary optimal boundary sequence is found 
via comparing all valid segment candidates. For each 
possible boundary, the number of times that it is included in 
the temporary optimal sequences is accumulated during the 
DP process. When the number becomes larger than a fixed 
threshold, such as 20 or 50, the corresponding boundary is 
heuristically considered as a real boundary. All the 
sequences that skip this boundary will be considered invalid 
in the following DP steps. For example, if boundary 1 in 
Figure 4 is heuristically approved, then all the 8 paths in the 
left part of the searching tree will be ignored in the 
subsequent process. 
 
3.2. Monte Carlo Method 
 
As is stated in Section 2, the aim of LDA is to find the best 
projection to separate real boundaries from false ones. The 
normalized histograms of the evaluation values of positive 
(green) and negative (red) samples are shown in Figure 5. 
We can observe that even after the projection, the positive 
samples can not be perfectly distinguished with any fixed 
threshold.  

Moreover, since the boundary evaluation is dependent 
on neighboring boundaries, one classification error, which 
is caused by the threshold problem, may introduce a series 
of errors. That is to say, a small change in the threshold may 
introduce a distinct change in the result. Therefore, a Monte 
Carlo method is employed here to make the searching 
process more stable. 

For each DP step, a random threshold is used for 
boundary evaluation in 2). The random thresholds are 
generated from a Normal distribution N(μ,σ). The 
expectation is decided as in (11), where the symbols have 



 
Fig. 6. Histogram of scene length in the dataset. 

 
the same meaning as in (10). And the standard deviation is 
decided as is shown in Figure 5, so that every real boundary 
has the chance of being detected. 

( ) 2prrr ⋅+= −+ μμμ                         (11) 
 

As is shown in Figure 3, the DP process is performed 
for many rounds. After each round, one optimal boundary 
sequence is obtained. Each boundary in the sequence gains 
one vote. Finally, the boundaries with enough votes will be 
considered as real scene boundaries in the result. In 
experiments, we found that 10 to 20 rounds of DP have a 
good balance between stability and speed. 

Besides stability, the Monte Carlo method brings 
another benefit. Some specific applications may prefer over-
segmentation or under-segmentation. The boundary voting 
data may be re-processed to generate more or less scene 
boundaries as needed, without re-running the program. 
 

4. EXPERIMENTAL RESULTS 
 
Experiments were carried out on a dataset of 40 videos, 
including 4 movies (Spider Man II, The Legend of Zorro, 
Hancock, and The Pursuit of Happiness), 7 TV dramas (in 
Chinese, Japanese, and Korean), 3 sitcoms, 6 DV works, 4 
interviews, and various kinds of TV programs and non-
professional videos. Most of the data were downloaded 
from different video websites. The 17-hour dataset contains 
about 660 scenes. This dataset is very complex and we 
believe that such a tough test is quite real-application-like. 
 
4.1. Performance Evaluation 
 
To properly evaluate video scene segmentation algorithms, 
both the F1 measure, which is defined in (12), and 
coverage/overflow [12] are adopted. 

( )precisionrecallprecisionrecallF +⋅⋅= 21          (12) 
 

In [5] and [6], a temporal boundary error tolerance of 
30 seconds is used when calculating recall and precision. 
That is to say, a detected boundary which is less than 30 
seconds apart from a real boundary can be regarded as a true 

Table 1. Overall experimental results. 
Method F1 Coverage Overflow 

[5] 53.6% 46.6% 21.1% 
[6] 63.7% 74.1% 27.5% 

Ours 66.8% 75.1% 27.2% 
 
positive.  While in our dataset, we found that more than 
40% of the scenes are within 60 seconds (See Figure 6.) 
Thus, an error of 30 seconds is not so tolerable. A stricter 
tolerance of 20 seconds is adopted in our experiments. Note 
that the F1 measure will decrease by more than 10% as the 
tolerance decreases from 30s to 20s, as is also shown in [5]. 

Coverage and overflow of a real scene are defined in 
(13) and (14), respectively. The overflow definition is 
modified from that in [12], so that it is normalized to 1. 
Note that smaller overflow indicates better performance. 
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Here xi is a scene in the ground truth, and yj is a scene 

in the segmentation result. L() is the length function as 
defined in (3). Coverage/overflow of a video is defined as 
the length-weighted average. 
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The overall performance on the video dataset is 

calculated as the weighted average of those on all the videos. 
Note that F1 is weighted by the scene boundary number in 
the video; while coverage and overflow are weighted by the 
length of the video. 

The advantage of F1 is its consideration of both recall 
and precision on each video. The advantage of 
coverage/overflow is its independence of any tolerance 
threshold setting. 
 
4.2. Algorithm Performance 
 
Our algorithm was evaluated in the manner of 5-fold cross-
validation. The dataset is divided into 5 sub-sets. Each sub-
set is tested with the other four being used for training. 
Besides the proposed algorithm, we also implemented those 
in [5] and [6] for comparison. Since these two methods and 
their parameters are quite detailed, the implementations can 
be considered same as those in the papers. 

The overall results on the dataset are exhibited in Table 
1. Comparing the top two rows, we can see that the shot 
clustering and sequence alignment algorithm [6] obviously 
outperforms the recursive bi-partition one [5]. This result is 
very similar to that in [6]. We can also observe that the 
coverage and overflow of [5] is quite un-balanced, which 

300+



 
Fig. 7. Performance comparison on different videos. 

 
indicates serious over-segmentation. In the bottom two rows, 
the F1 measure of our algorithm is more than 3% higher; 
and our algorithm achieved a higher coverage and a lower 
overflow compared to that of [6]. On the whole, it is clear 
that our algorithm achieved the best performance. 

To show the performance on different videos, the F1 
values obtained by the three algorithms are exhibited in 
Figure 7. Here only results on the main video categories are 
shown to save space. From Figure 7, we can see that the 
performance of our algorithm is more stable on different 
videos, compared to those of [5] and [6]. We can also 
observe the dramatic variation of performances on the DV 
works and interviews. This is mainly because the scene 
number is much less in these videos. 

During the process of video scene ground truth labeling, 
we found that an un-trained person can hardly achieve 90% 
accuracy after viewing the video only once. Based on this 
knowledge, our result is acceptable for automatic general 
video scene segmentation. It is obvious that only visual 
similarity information is not enough to characterize video 
scene boundaries. Many other features, such as shot length 
[1], MFCC [2], audio class [3], can be adopted in the 
proposed framework as shot similarity measures to better 
satisfy the requirements of real applications. 

Time complexity of the proposed algorithm is shown in 
Figure 8. The typical processing time for a movie is within 
10 minutes; that of a drama is within 2.5 minutes. The result 
is obtained on an Intel Core2 2.33 GHz CPU with single 
thread. Note that the processing time is proportional to the 
number of rounds (10 in the experiments) that the DP runs 
for each video. 
 

5. CONCLUSION 
 
This paper proposed a novel and superior video scene 
segmentation algorithm. This algorithm better exploits the 
correlations among different scenes using the new boundary 
evaluation criterion, and it finds the global optimal 
boundary sequence via dynamic programming and a Monte 
Carlo method. The effectiveness and robustness of the 
algorithm have been proven through extensive experiments 
on diversified videos. More features may be integrated in 
the framework to further enhance the performance. 

 
Fig. 8. Time complexity of the proposed algorithm. 
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