
VIDEO SCENE SEGMENTATION USING A NOVEL BOUNDARY EVALUATION
CRITERION AND DYNAMIC PROGRAMMING

Bo Han, Weiguo Wu

Sony China Research Laboratory, Beijing 100190, China
{bo.han, weiguo.wu}@sony.com.cn

ABSTRACT

Video scene segmentation is a fundamental step for video
summarization and browsing, which is a very promising
application of multimedia analysis. There are two key
elements, namely, boundary evaluation and boundary
searching, in a scene segmentation algorithm. In this paper,
we propose a novel boundary evaluation criterion, including
the multiple normalized min-max cut scores, which consider
not only neighboring but non-neighboring scene similarities
with a memory-fading model, and the maximal cross-
boundary strict shot similarity, which considers both color
and structure similarities. Dynamic programming with a
heuristic search scheme is adopted to quickly find the global
optimal scene boundary sequence. Moreover, a Monte Carlo
method is adopted to improve the stability of the searching
process. Experimental results on a dataset of 40 diversified
videos have proven the algorithm efficient, robust, and
superior to the existent methods.

Index Terms—Scene segmentation, normalized min-
max cut, LDA, dynamic programming, heuristic search,
Monte Carlo, video summarization, video browsing

1. INTRODUCTION

With the fast growing of amount and accessibility of video
contents, video summarization and browsing techniques are
becoming more and more important in real applications. A
video scene consists of a group of semantically closely-
related consecutive shots. Scene is the essential video
content unit and the most effective clue for fast video
content understanding. For both of the usual video
abstraction forms, i.e., key frame sequence and video skim,
the main scenes of the video should be segmented and well-
represented in the results. Hence, video scene segmentation,
or temporal shot grouping, is a fundamental step for video
summarization and browsing.

There have been many research efforts aiming for
automatic video scene segmentation. The MCMC
framework is introduced in [1]. However, because of some
strong assumptions, parameters in the algorithm need to be
tuned for different video types. An SVM-based sliding

window boundary detection scheme is proposed in [2]. But
the paper only exhibited experimental results on simulated
data samples. Audio classification and speaker identification
information is adopted in [3] for segmenting documentary
films. Visual, audio, and textual clues are integrated in the
framework of [4] to detect program changes in TV
broadcast streams. Such approaches [3] [4] are only suitable
for some specific tasks. In [5], the complex multi-cut
problem of scene segmentation is simplified using a
recursive shot similarity graph bi-partitioning method. Ref.
[6] proposed a shot clustering and sequence alignment
scheme, and reported better performance than [5]. For
performance comparison, the latter two scene segmentation
algorithms [5] [6] are implemented and tested in this paper.

A scene segmentation algorithm has two key elements,
namely, boundary evaluation and boundary searching. The
evaluation part tells how likely an assumed scene boundary
should be a real one from the pattern classification
viewpoint. The searching part investigates all the possible
boundary combinations in a certain order and selects the
best scene boundary sequence as the result. In this paper, a
novel scene evaluation criterion is proposed. Each possible
scene boundary is evaluated using both the multiple
normalized min-max cut scores, which consider not only
neighboring but non-neighboring scene similarities with a
memory-fading model, and the maximal cross-boundary
strict shot similarity, which considers both color and
structure similarities. Based on the scores and the similarity,
an LDA classifier, which is obtained in a supervised
learning manner, judges whether the scene boundary is a
real one. Dynamic programming with a heuristic search
scheme is adopted for fast global optimal boundary
searching. Moreover, a Monte Carlo method is introduced
to improve the stability of the searching process, i.e.,
dynamic programming is executed many times with random
boundary evaluation thresholds, and the final boundaries are
determined via voting.

Comprehensive experiments were carried out on a
dataset of 40 diversified videos. The 17-hour dataset
contains about 660 scenes. As far as we know, this is the
most complex scene segmentation dataset in the literature.
In the experiments, the proposed algorithm proved its
effectiveness and outperformed the existent methods [5] [6].

978-1-61284-350-6/11/$26.00 ©2011 IEEE

Fig. 1. Part of a scene from the movie Spider Man II.
Each shot is represented by a frame in it. The consecutive shots are
numbered according to their temporal order.

The rest of this paper is organized as follows. The
scene boundary evaluation criterion is proposed in Section 2.
The algorithm for finding all the boundaries is detailed in
Section 3. Section 4 demonstrates experimental results of
the different algorithms. Section 5 concludes the paper.

2. SCENE BOUNDARY EVALUATION

Generally, video scene segmentation is based on the shot
change detection results. The schemes in [7] and [8] are
integrated in this work as the shot change detector. Every
detected shot boundary in the video is considered as a
possible scene boundary, and need to be evaluated as a
candidate. The novel evaluation criterion will be introduced
in the sub-sections below.

2.1. Multiple Normalized Min-max Cut Scores

The basic principle of scene boundary evaluation is that the
content should be quite similar inside a scene, and should
have some obvious changes across a boundary.

The graph partition model [9], which regards the shots
in a video as connected vertices in a graph, transforms video
segmentation problem into partitioning the graph into
isolated parts. Although graph partition model has been
adopted in [5], intra-scene similarity was not well exploited
in the recursive bi-partitioning scheme. The min-max cut
[10] is a graph partition criterion that characterizes intra-
scene similarity and inter-scene dissimilarity at the same
time. However, it tends to partition the video into equal-
length scenes by its design. To solve the aforementioned
problems, we propose multiple normalized min-max cut
scores for scene boundary evaluation.

Figure 1 shows some consecutive shots from one same
scene in the movie Spider Man II. We can observe that,
although the shots 12 – 14 (spider man thrown out through
the roof and then fly back soon) are just a very short part of
the whole scene, they share similar visual features and are
quite dissimilar from other shots.

Fig. 2. A simple video segmentation example.

Considering only the closest neighboring scenes on

both sides of the assumed boundary will result in over-
segmentation (before 12 and after 14 in Figure 1). Since the
scene boundaries separate all the shots that locate on
different sides of them, the relationships between shots in
non-neighboring scenes (1-11 and 15-20) are also taken into
account to avoid such over-segmentations.

As is shown in Figure 2, suppose that a video has 4
consecutive scenes a, b, c, and d, of which each consists of
at least one shot. Then evaluation of the boundary 6
(between b and c) is based on the multiple graph cut scores,

() () () () ()[]daCdbCcaCcbCcbE ,,,,,,,, =
r

 (1)

where the normalized min-max cut C() is defined as,

() ()
()

()
() ()[]daDv

ddA
daA

aaA
daAdaC ,exp

,
,

,
,, ⋅−⋅⎟

⎠

⎞
⎜
⎝

⎛ += (2)

where constant v is the memory fading speed parameter.
The function D() is defined as the distance between the last
frame of the temporally former segment and the first frame
of the latter one. The length weighted association function
A() is defined as,

()
() () ()

() ()∑ ∑
∑ ∑

∈ ∈

∈ ∈

⋅

⋅⋅
=

as ds ji

as ds jijiC

i j

i j

sLsL

sLsLssS
daA

,
, (3)

where si and sj represent the ith and jth shot in the video,
respectively. SC() is the shot color similarity function. The
function L() means the length of the segment. Since longer
shots occupy larger portion in the scene than shorter ones,
they should play a more important role in the computation
of scene association. So, the association definition in (3) is a
shot-length-weighted mean of the shot similarities. Note that
it is normalized compared to that in min-max cut [10],
which is positively correlated to the shot number in each
scene and makes equal-length scenes favored. SC() is
defined as,

() ()[] ()[]
⎭
⎬
⎫

⎩
⎨
⎧=

∈∈ nCsfmCsfjiC fHfHIssS
jnim

mean,mean, (4)

where fm and fn are representative frames of si and sj,
respectively. HC() means the 64-bin HSV (2 bits for each
channel) histogram of the frame. The function I() means
histogram intersection.

For two shots that are far apart in the video, if the shots
in-between are quite different from them, then it is natural
to separate them into different scenes, no matter how similar

Shot:

Boundary:

s1

t
0 1 2 3 4 5 6 7 8 9 10

s2 s3 s4 s5 s6 s7 s8 s9 s10

Scene: a b c d

Shot:

Boundary:

s1

t
0 1 2 3 4 5 6 7 8 9 10

s2 s3 s4 s5 s6 s7 s8 s9 s10

Scene: a b c d

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

they are. Hence, the memory fading model is introduced in
(2) so that the relationship (edge weights in the graph)
between two assumed scenes becomes weaker as their
temporal distance becomes larger. In our system, the
memory fading parameter v is set to be 0.05 (1/second)
through all experiments. In practice, since the total length of
3 consecutive scenes must be relatively large, the graph cut
in (2) is almost zero if the two scenes are more than 3
boundaries apart. Therefore, at most 6 scenes around the
boundary need to be considered in (1), and considering 4
neighboring scenes is also acceptable in general applications.

2.2. Maximal Cross-boundary Strict Shot Similarity

In Figure 1, the color similarities among the shots are
depicted in (4) using the global color histogram. It can be
observed that some of them, such as 1, 16 and 20, share
almost identical visual features. Besides (4), their similarity
should contribute more in the boundary evaluation criterion,
so that they are more likely to be grouped into one same
scene. Thus, we propose the strict shot similarity, which
should be large if and only if the two shots are very similar
both in color and in structure, as,

() ()nm
F
SsfsfjiS ffSssS

jnim

,min,
, ∈∈

= (5)

where the strict shot similarity SS() is the minimum of strict
similarities between their representative frames, which is
defined as,

() () ()[] () ()[]{ }n
r
Cm

r
Cn

r
Sm

r
Sregionsrnm

F
S fHfHIfHfHIffS ,,mean, ⋅=

∈
 (6)

where each of the two frames is divided in to 4 * 4 regions.
Every pair of corresponding regions in the two frames is
compared. Hr

C() means the color histogram, as that in (4), of
region r, Hr

S() means the R-HOG feature [11] of region r.
Each frame is down-sampled to a size between 80 * 60 and
160 * 120 before R-HOG feature extraction. It is obvious
that a region pair will not contribute to the strict frame
similarity if they are dissimilar either in color or in texture.

To make the similarity measure more strict, and to
emphasize the structure similarity, (5) is further tuned as,

() ()[] ()jiCjiSjiS ssSssSssS ,,, 2=′ (7)

Finally, the maximal cross-boundary strict shot

similarity for boundary 6 in Figure 2 is defined as,
() () ()[]jijiScsbs

ssDvssScbE
ji

,exp,max,
,

⋅−⋅′=′
≥≤

 (8)

where the constant v and function D() are defined as in (2).

2.3. Forming Evaluation Criterion

In order to convert the multiple scores and the maximal
similarity to an evaluation value for classification, they are

Fig. 3. The flowchart of boundary sequence searching.

concatenated into a feature vector, and a supervised learning
is performed to find the projection p that best distinguishes
the real scene boundaries from the false ones. Then, the
simplest way of judging whether to accept an assumed
boundary or not is to compare (9) with a fixed threshold.

() () ()[] pcbEcbEcbE rr
⋅′= ,,,, (9)

The projection p is obtained via Linear Discriminant

Analysis (LDA), which gives the best linear classification
under Fisher criterion, as,

() ()+−
−

−+ −∗Σ+Σ= μμ rrr 1p (10)

whereμ+ andΣ+ represent the mean and covariance of the
feature vectors of positive samples, respectively; the
counterpart two symbols represent those of the negative
samples. Positive samples are generated using the scene
boundary ground truth. Negative samples are simulated
using randomly selected shot boundaries which are not real
scene boundaries.

Note that some non-linear classifiers, such as Support
Vector Machine (SVM), may take the place of LDA to
achieve a better projection p, if enough (for example,
thousands of) positive samples are available for training.

3. BOUNDARY SEQUENCE SEARCHING

It can be seen from the definitions in Section 2 that the
evaluation of one scene boundary is dependent on the
positions of its neighbors. Hence, the proposed boundary
sequence searching algorithm aims at finding the global
optimum. The shot number in a scene varies greatly (from
only 1 to over 100) in different cases. Compared with the
fixed-length sliding window searching schemes [2] [6],
which find every boundary with neighboring boundary
positions unknown, the proposed algorithm is more robust
to scene length variances.

The flowchart of our algorithm is shown in Figure 3.
Dynamic programming (DP) with a heuristic search scheme
is proposed to quickly find the optimum in the huge
searching space of possible boundary sequences, of which
each consists of some shot boundaries in the video. During
DP, each boundary case is evaluated using the LDA
projection in (9) based on the shot similarity matrix. The DP
is carried out for multiple times with random boundary
evaluation thresholds. After each round, every boundary in
the result sequence obtains a vote. The final result is
determined by the vote numbers of the boundary candidates.

Fig. 4. A simple DP searching tree example.

3.1. Dynamic Programming

Suppose the total shot number in a video is n (A common
Hollywood movie has about 2000 shots.) then the total
number of possible scene boundary combinations is 2n-1. To
find the global optimal boundary sequence in the huge
searching space is an NP-hard problem. This is why DP
with a heuristic search scheme is proposed here.

DP breaks the problem of finding the optimal sequence
into recursive simpler searching steps. Since the boundary
evaluation is dependent on its neighbors, at each step, one
possible segment of the boundary sequence, instead of one
single boundary candidate, is investigated.

The simple searching tree of a 5-shot video is shown in
figure 4. Each possible boundary sequence must start with
boundary 0 and end with 5. There are totally 16 possible
boundary sequences in the searching space. For example, a
segment investigated in one DP step may be (2, 3, 5), and
one of its possible preceding segments is (0, 2, 3). These
two segments form a solution (0, 2, 3, 5) which divides the
video into 3 segments (thick arrows in Figure 4) at
boundary 2 and 3.

The basic philosophy of the searching process is that,
we hope to find as many as possible real boundaries; and in
the case of same boundary number, we hope to find the
most probable boundaries.

The aim of each DP step is to find one best preceding
segment. Denote a boundary sequence segment as (bp, bc,
bn). A step of the proposed DP algorithm is described as
follows. The whole process is performed via ascending
looping for bn, bc, and bp.

1) Find one/another valid preceding segment candidate

(bf, bp, bc). If successful, go to 2); otherwise, go to 5).
2) Compute the evaluation value as in (9) for bp in the

boundary sequence. If the value is smaller than the
threshold, go to 3); otherwise, go to 1).

3) If (bp, bc, bn) currently has no preceding segment,
record (bf, bp, bc) as its preceding segment, then go to
1); otherwise, go to 4).

4) Compare (bf, bp, bc) with the current preceding
segment of (bp, bc, bn). If (bf, bp, bc) is “better”, replace
the current preceding segment. Go to 1).

5) If (bp, bc, bn) has no preceding segment, set it as invalid;
otherwise, set it as valid. Step finished.

Fig. 5. Parameter selection for random thresholds.

According to the aforementioned philosophy, the term

“better” in 4) means larger preceding boundary number and
smaller average of preceding evaluation values.

After the whole DP process, the best (bp, bc, bn) with bn
being the end boundary of the video can be found. Then, the
optimal boundary sequence can be obtained via recursively
retrieving the preceding segments.

To further decrease the computational burden, a
heuristic search scheme is proposed in our algorithm. For
every bn, a temporary optimal boundary sequence is found
via comparing all valid segment candidates. For each
possible boundary, the number of times that it is included in
the temporary optimal sequences is accumulated during the
DP process. When the number becomes larger than a fixed
threshold, such as 20 or 50, the corresponding boundary is
heuristically considered as a real boundary. All the
sequences that skip this boundary will be considered invalid
in the following DP steps. For example, if boundary 1 in
Figure 4 is heuristically approved, then all the 8 paths in the
left part of the searching tree will be ignored in the
subsequent process.

3.2. Monte Carlo Method

As is stated in Section 2, the aim of LDA is to find the best
projection to separate real boundaries from false ones. The
normalized histograms of the evaluation values of positive
(green) and negative (red) samples are shown in Figure 5.
We can observe that even after the projection, the positive
samples can not be perfectly distinguished with any fixed
threshold.

Moreover, since the boundary evaluation is dependent
on neighboring boundaries, one classification error, which
is caused by the threshold problem, may introduce a series
of errors. That is to say, a small change in the threshold may
introduce a distinct change in the result. Therefore, a Monte
Carlo method is employed here to make the searching
process more stable.

For each DP step, a random threshold is used for
boundary evaluation in 2). The random thresholds are
generated from a Normal distribution N(μ,σ). The
expectation is decided as in (11), where the symbols have

Fig. 6. Histogram of scene length in the dataset.

the same meaning as in (10). And the standard deviation is
decided as is shown in Figure 5, so that every real boundary
has the chance of being detected.

() 2prrr ⋅+= −+ μμμ (11)

As is shown in Figure 3, the DP process is performed
for many rounds. After each round, one optimal boundary
sequence is obtained. Each boundary in the sequence gains
one vote. Finally, the boundaries with enough votes will be
considered as real scene boundaries in the result. In
experiments, we found that 10 to 20 rounds of DP have a
good balance between stability and speed.

Besides stability, the Monte Carlo method brings
another benefit. Some specific applications may prefer over-
segmentation or under-segmentation. The boundary voting
data may be re-processed to generate more or less scene
boundaries as needed, without re-running the program.

4. EXPERIMENTAL RESULTS

Experiments were carried out on a dataset of 40 videos,
including 4 movies (Spider Man II, The Legend of Zorro,
Hancock, and The Pursuit of Happiness), 7 TV dramas (in
Chinese, Japanese, and Korean), 3 sitcoms, 6 DV works, 4
interviews, and various kinds of TV programs and non-
professional videos. Most of the data were downloaded
from different video websites. The 17-hour dataset contains
about 660 scenes. This dataset is very complex and we
believe that such a tough test is quite real-application-like.

4.1. Performance Evaluation

To properly evaluate video scene segmentation algorithms,
both the F1 measure, which is defined in (12), and
coverage/overflow [12] are adopted.

()precisionrecallprecisionrecallF +⋅⋅= 21 (12)

In [5] and [6], a temporal boundary error tolerance of
30 seconds is used when calculating recall and precision.
That is to say, a detected boundary which is less than 30
seconds apart from a real boundary can be regarded as a true

Table 1. Overall experimental results.
Method F1 Coverage Overflow

[5] 53.6% 46.6% 21.1%
[6] 63.7% 74.1% 27.5%

Ours 66.8% 75.1% 27.2%

positive. While in our dataset, we found that more than
40% of the scenes are within 60 seconds (See Figure 6.)
Thus, an error of 30 seconds is not so tolerable. A stricter
tolerance of 20 seconds is adopted in our experiments. Note
that the F1 measure will decrease by more than 10% as the
tolerance decreases from 30s to 20s, as is also shown in [5].

Coverage and overflow of a real scene are defined in
(13) and (14), respectively. The overflow definition is
modified from that in [12], so that it is normalized to 1.
Note that smaller overflow indicates better performance.

() ()[] ()ijiji xLyxLxCR Imax= (13)

() () ()∑ ≠

−=
φji yxj jii yLxLxOF

I,
1 (14)

Here xi is a scene in the ground truth, and yj is a scene

in the segmentation result. L() is the length function as
defined in (3). Coverage/overflow of a video is defined as
the length-weighted average.

() () () ()videoLxLxCRvideoCR
videox ii

i
∑ ∈

⋅= (15)

() () () ()videoLxLxOFvideoOF

videox ii
i

∑ ∈
⋅= (16)

The overall performance on the video dataset is

calculated as the weighted average of those on all the videos.
Note that F1 is weighted by the scene boundary number in
the video; while coverage and overflow are weighted by the
length of the video.

The advantage of F1 is its consideration of both recall
and precision on each video. The advantage of
coverage/overflow is its independence of any tolerance
threshold setting.

4.2. Algorithm Performance

Our algorithm was evaluated in the manner of 5-fold cross-
validation. The dataset is divided into 5 sub-sets. Each sub-
set is tested with the other four being used for training.
Besides the proposed algorithm, we also implemented those
in [5] and [6] for comparison. Since these two methods and
their parameters are quite detailed, the implementations can
be considered same as those in the papers.

The overall results on the dataset are exhibited in Table
1. Comparing the top two rows, we can see that the shot
clustering and sequence alignment algorithm [6] obviously
outperforms the recursive bi-partition one [5]. This result is
very similar to that in [6]. We can also observe that the
coverage and overflow of [5] is quite un-balanced, which

300+

Fig. 7. Performance comparison on different videos.

indicates serious over-segmentation. In the bottom two rows,
the F1 measure of our algorithm is more than 3% higher;
and our algorithm achieved a higher coverage and a lower
overflow compared to that of [6]. On the whole, it is clear
that our algorithm achieved the best performance.

To show the performance on different videos, the F1
values obtained by the three algorithms are exhibited in
Figure 7. Here only results on the main video categories are
shown to save space. From Figure 7, we can see that the
performance of our algorithm is more stable on different
videos, compared to those of [5] and [6]. We can also
observe the dramatic variation of performances on the DV
works and interviews. This is mainly because the scene
number is much less in these videos.

During the process of video scene ground truth labeling,
we found that an un-trained person can hardly achieve 90%
accuracy after viewing the video only once. Based on this
knowledge, our result is acceptable for automatic general
video scene segmentation. It is obvious that only visual
similarity information is not enough to characterize video
scene boundaries. Many other features, such as shot length
[1], MFCC [2], audio class [3], can be adopted in the
proposed framework as shot similarity measures to better
satisfy the requirements of real applications.

Time complexity of the proposed algorithm is shown in
Figure 8. The typical processing time for a movie is within
10 minutes; that of a drama is within 2.5 minutes. The result
is obtained on an Intel Core2 2.33 GHz CPU with single
thread. Note that the processing time is proportional to the
number of rounds (10 in the experiments) that the DP runs
for each video.

5. CONCLUSION

This paper proposed a novel and superior video scene
segmentation algorithm. This algorithm better exploits the
correlations among different scenes using the new boundary
evaluation criterion, and it finds the global optimal
boundary sequence via dynamic programming and a Monte
Carlo method. The effectiveness and robustness of the
algorithm have been proven through extensive experiments
on diversified videos. More features may be integrated in
the framework to further enhance the performance.

Fig. 8. Time complexity of the proposed algorithm.

6. REFERENCES

[1] Y. Zhai, and M. Shah, “Video scene segmentation

using Markov chain Monte Carlo,” IEEE Trans.
Multimedia, vol. 8, no. 4, pp. 686-697, 2006.

[2] N. Goela, K. Wilson, et al, “An SVM framework for
genre-independent scene change detection,” IEEE
ICME, 2007, pp. 532-535.

[3] P. Sidiropoulos, V. Mezaris, et al, “Multi-modal scene
segmentation using scene transition graphs,” ACM MM,
2009, pp. 665-668.

[4] J. Wang, L. Duan, et al, “A multimodal scheme for
program segmentation and representation in broadcast
video streams,” IEEE Trans. Multimedia, vol. 10, no. 3,
pp. 393-408, 2008.

[5] Z. Rasheed, and M. Shah, “Detection and
representation of scenes in videos,” IEEE Trans.
Multimedia, vol. 7, no. 6, pp. 1097-1105, 2005.

[6] V. T. Chasanis, A. C. Likas, et al, “Scene detection in
videos using shot clustering and sequence alignment,”
IEEE Trans. Multimedia, vol. 11, no. 1, pp. 89-100,
2009.

[7] B. Han, Y. Hu, et al, Enhanced Sports Video Shot
Boundary Detection Based on Middle Level Features
and a Unified Model, IEEE Trans. Consumer
Electronics, vol. 53, no. 3, pp. 1168-1176, 2007.

[8] Y. Hu, B. Han, et al, Enhanced Shot Change Detection
using Motion Features for Soccer Video Analysis,
IEEE ICME 2007, pp. 1555-1558.

[9] M. Yeung, B.-L. Yeo, et al, “Segmentation of video by
clustering and graph analysis,” Computer Vision and
Image Understanding, vol. 71, no. 1, pp. 94-109, 1998.

[10] C. H. Q. Ding, X. He, et al, “A min-max cut algorithm
for graph partitioning and data clustering,” IEEE ICDM,
2001, pp. 107-104.

[11] N. Dalal and B. Triggs. “Histograms of Oriented
Gradients for Human Detection,” IEEE CVPR, 2005,
pp. 886-893.

[12] J. Vendrig, and M. Worring, “Systematic evaluation of
logical story unit segmentation,” IEEE Trans.
Multimedia, vol. 4, no. 4, pp. 492-499, 2002.

typical
dramas

typical
movies

movie drama interviewsitcom DV

F1

