
A DESIGN TOOL FOR EFFICIENT MAPPING OF MULTIMEDIA APPLICATIONS ONTO

HETEROGENEOUS PLATFORMS

Chung-Ching Shen, Hsiang-Huang Wu, Nimish Sane, William Plishker, and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and

Institute for Advanced Computer Studies

University of Maryland, College Park, MD 20742, USA

{ccshen, hhwu, nsane, plishker, ssb}@umd.edu

ABSTRACT

Development of multimedia systems on heterogeneous

platforms is a challenging task with existing design tools due

to a lack of rigorous integration between high level abstract

modeling, and low level synthesis and analysis. In this paper,

we present a new dataflow-based design tool, called the tar-

geted dataflow interchange format (TDIF), for design, analy-

sis, and implementation of embedded software for multime-

dia systems. Our approach provides novel capabilities, based

on the principles of task-level dataflow analysis, for explor-

ing and optimizing interactions across application behavior;

operational context; heterogeneous platforms, including high

performance embedded processing architectures; and imple-

mentation constraints.

Index Terms— Embedded signal processing, software

synthesis, design tools, dataflow graphs.

1. INTRODUCTION

Nowadays, a variety of design platforms, such as Texas In-

struments’ Multimedia Video Processor, Broadcom’s Mobile

Multimedia Processors, or Nvidia’s GoForce Multimedia Pro-

cessor, are available for implementing a wide range of mul-

timedia applications. However, the application and exploita-

tion of these heterogeneous platforms for multimedia system

design remains largely ad hoc, and the retargetability of de-

sign tools across these platforms has not been adequately ad-

dressed, resulting in a lack of rigorous integration between

high level modeling, and low level synthesis and analysis.

Multimedia applications can often be described in terms

of signal processing block diagrams. Model-based design

methods based on dataflow models of computation have be-

come increasingly popular to provide formal semantics for

such block diagrams because of their natural correspondence

to signal flow graphs and system level DSP flows. Conse-

quently, dataflow graphs are widely used to model applica-

tions in many multimedia domains (e.g., see [1]).

This research was sponsored in part by the US Air Force Research Lab-

oratory, and the Laboratory for Telecommunication Sciences.

In dataflow models of computation, DSP applications are

modeled as directed graphs, where vertices (actors) represent

computational modules for executing (firing) functional tasks,

and edges represent first-in-first-out (FIFO) channels for stor-

ing data values (tokens), and imposing data dependencies be-

tween actors. Whenever an actor fires, it produces and con-

sumes tokens from its input and output edges, respectively.

There is a wide variety of development tools that utilize

dataflow models to aid in the design and implementation of

DSP applications (e.g., see [2, 3, 4, 5, 6, 7, 8]). Using these

tools, application designers can develop the functionality of

dataflow actors, and capabilities are provided for automated

system simulation or synthesis. However, static dataflow

models are largely used in such tools, which limits their utility

in modern multimedia applications, where dynamic dataflow

communication across functional subsystems is increasingly

employed (e.g., variable data rates arising due to dynamically

determined quality of service constraints). Furthermore, ex-

isting dataflow tools are largely platform or language specific,

and do not address retargetability as a primary objective.

In this paper, we present a new dataflow-based design

tool, called the targeted dataflow interchange format (TDIF),

for design and analysis of embedded software for multime-

dia systems. TDIF extends the capabilities of DIF [5] with

dynamic dataflow software synthesis, cross-platform actor

design support, and dataflow-integrated features for instru-

menting and tuning implementations. The dataflow-based ap-

proach used in this work is unique by leveraging the power

of dynamic dataflow models and providing integration of au-

tomation of code generation for programming interfaces and

low level customizations for implementations targeted to het-

erogeneous platforms.

TDIF provides a flexible environment without compro-

mising the types of optimizations possible by offering a

breadth of formal models for the application designer to

choose from. This application description is then tied as

closely as possible to the application domain, not the tar-

get, making it highly portable while still structured enough

to be optimized for. Furthermore, individual actors can still

978-1-61284-350-6/11/$26.00 ©2011 IEEE

be tuned using low level techniques for the target platforms,

and such tuning is facilitated by novel support that is provided

for instrumenting dataflow representations and schedules.

2. BACKGROUND

2.1. Core Functional Dataflow

TDIF is based on a general dataflow model of computation

called core functional dataflow (CFDF), which can be viewed

as the deterministic sub-class of enable-invoke dataflow [9].

CFDF is a dynamic dataflow model that can express both

static and data-dependent dataflow rates, as well as condi-

tional behaviors. In CFDF, actors are specified as sets of

modes, where each mode has a fixed production and con-

sumption rate associated with each output and input port, re-

spectively. During execution, each actor selects one mode

from its set of modes as the current mode, which can be main-

tained as part of its state.

In CFDF, the separation of enable (firability checking) and

invoke (firing) functionalities is defined as a first class char-

acteristic of the model. Each actor has an associated enable

function, which can be called at any time between firings, and

returns a Boolean value indicating whether or not there is suf-

ficient data available on the actor input ports to fire the actor

in its current mode. Since such an isolated enable check is

available, the invoke function of an actor assumes that suffi-

cient data is present, and reads its input data without block-

ing reads. When an actor is invoked, it executes its current

mode, produces and consumes data, and updates its current

mode. Since different modes of an actor can have different

production and consumption rates, dynamic dataflow can be

modeled flexibly in CFDF.

2.2. The Dataflow Interchange Format

The Dataflow Interchange Format (DIF) framework provides

a standard approach for specifying mixed-grain dataflow-

based semantics for signal processing system design [5]. The

DIF Language (TDL), which is part of the DIF framework,

provides a unified textual language for expressing different

kinds of dataflow semantics, including graph topologies, hi-

erarchical design structure, dataflow-related design proper-

ties, and actor-specific information. TDL is therefore suitable

for both programming and interchange (transfer of dataflow

graphs across design tools). By using TDL, multimedia sig-

nal processing systems can be represented as dataflow graphs

at a high level of abstraction.

The DIF package (TDP) is a software tool that accom-

panies TDL, and provides a variety of intermediate represen-

tations, analysis techniques, and graph transformations that

are useful for working with dataflow graphs. With the sup-

port of module libraries for the actors referenced in a dataflow

graph, an efficient software implementation for the graph can

be synthesized automatically using the DIF-to-C tool [5]. Al-

though DIF-to-C supports only static dataflow applications —

in particular, those that are based on synchronous dataflow

(SDF) semantics [10] — the tool is capable of exploring im-

plementation trade-offs that are exposed effectively through

DIF-based dataflow representations.

3. THE TARGETED DIF DESIGN TOOL

In this paper, we build on the capabilities of the DIF frame-

work, and develop a new multimedia application development

tool called Targeted DIF (TDIF). TDIF consists of new plug-

ins to the DIF environment that focus on efficient mapping

of CFDF-based multimedia application representations onto

embedded platforms. By building on the CFDF model of

computation, TDIF can flexibly accommodate both static and

dynamically structured multimedia applications.

The TDIF environment currently supports C- and GPU-

based implementations (i.e., for CPU and GPU platforms).

The GPU-based capabilities of TDIF are currently oriented

towards NVIDIA GPUs, based on the CUDA programming

framework [11]. Since CUDA is a C-like programming lan-

guage (CUDA can be viewed a variant of C with NVIDIA ex-

tensions and certain restrictions), a C- or CUDA-based actor

can be implemented as an abstract data type (ADT) to enable

efficient and convenient reuse of the actor across arbitrary ap-

plications. In typical C implementations, ADT components

include header files to represent definitions that are exported

to application developers and implementation files that con-

tain implementation-specific definitions.

An illustration of the TDIF environment and associated

design flow is shown in Fig. 1. By following the presented

methodology, the designer can focus on design, implementa-

tion and optimization for dataflow actors and experiment with

alternative scheduling strategies and instrumentation tech-

niques for the targeted platforms based on programming in-

terfaces that are automatically generated from the TDIF tool.

These automatically-generated interfaces provide structured

design templates for the designer to follow in order to gener-

ate dataflow-based actors that are formally integrated into the

overall synthesis tool. In Fig. 1, the dashed line indicates de-

sign considerations that need to be taken into account jointly

to achieve maximum benefit from TDIF-based system design.

The TDIF tool is based on four software packages — the

TDIF compiler, TDIFSyn software synthesis package, TDIF

run-time library, and Software synthesis engine. The interac-

tions among these packages are illustrated in Fig. 1.

3.1. Application Programming Interfaces

As part of the TDIF environment, a new dataflow actor de-

sign language, called the TDIF language, is provided. The

TDIF language gives a high level specification format for

writing dataflow actors that can be efficiently and reliably

retargeted across different platforms. In contrast, TDL in

 !"!#$%&'(!)*&

+)),-.!/$0&&

12)(2320"!/$0&&

4 56&7!089!82:&

 56&;!(32(&
 56&50"2(<2=-!"2&

12)(2320"!/$0&

+."$(&5<),2<20"!/$0&

4>!(82"2=&7!089!82:&

?$@%!(2&5<),2<20"!/$0&

4>!(82"2=&;,!A$(<:&

190B/<2&7-C(!(D&

4+."$(E656F& 23-80&G$0"2H":&

+."$(&?)2.-I.!/$0&

4> 56&7!089!82:&
> 56&G$<)-,2(&

+."$(&+;5&

?$@%!(2&?D0"*23-3&J08-02&

> 56?D0&;!.K!82&

 !"!#$%&'(!)*&+;5&

?.*2=9,2&

5<),2<20"!/$0&
4>!(82"2=&7!089!82:&

 !"#$%&#&'()"*+',#

 !"# $%&#$"-./0# ++1#

2-"'3-4"5.6"7#

89-:+).;(<+0-#

?.*2=9,2&+;5&

2-"'3-4"5.6"7#

89-:+).;(<+0-#

503"(9<20"!/$0&

F)2(!/$03&L&M2"(-.3&

Fig. 1. TDIF-based design flow.

the DIF framework is used to describe high level specifica-

tions of dataflow graphs for the target application. The TDIF

language is a light-weight language that consists of five key-

words: module, input, output, param, and mode.

The keyword module is used to define an actor with a

given name and type, where the type specifies the language

used to implement the actor. The keywords input and

output are used to define input and output ports of an ac-

tor along with the names and token types associated with the

ports. The keyword param is used to define parameters of

an actor with names and the associated parameter types. The

keyword mode is used to define the modes of a CFDF actor.

In the TDIF language, a given actor specification should

contain (at the beginning) a single module statement; each

of the other kinds of statements can be repeated as many times

as needed for the given type of structure being declared (e.g.,

two input statements and one output statement for a two-

input, single-output actor). As discussed previously, C and

CUDA are presently supported as target languages. As addi-

tional target languages are added to TDIF, the TDIF language

will be extended by simply adding additional type options to

the module statement.

The TDIF compiler, which is developed based on the Bi-

son compiler construction framework [12], parses the TDIF

specification of an actor and generates corresponding ap-

plication programming interfaces (APIs) for CFDF-based,

dataflow implementation of the actor in the targeted language.

For C and CUDA, these APIs are generated in the form of

header files for the actor programmer to base his or her imple-

mentations on. The APIs provide standard prototypes for in-

terface functions, including the invoke function, which im-

plements the functionality of the actor, and two data rate func-

tions that return the production rate and consumption rate, re-

spectively, associated with a given port and a given mode. The

generated API features also include relevant constant defini-

tions associated with the dataflow actor, including the num-

bers of input ports, output ports, modes, and parameters.

The TDIFSyn package is a software package that takes a

DIF intermediate representation as input from the DIF frame-

work (e.g., a representation that has been constructed from a

TDL file), and generates a top-level C language implemen-

tation file and an associated API for scheduling. Here, by

scheduling, we mean the assignment of dataflow actors to

processors and the execution ordering of actors that share the

same processor. Extensive prior work exists on scheduling

dataflow graphs for various purposes (e.g., see [1]). However,

systematic techniques are lacking for transferring the results

of scheduling techniques into practical implementations. TD-

IFSyn helps to bridge this gap by providing target-language-

specific APIs through which scheduling results can interact

with the dataflow graph and its individual components.

The automatically generated top-level C file initializes

the operational contexts of actors and FIFOs (communication

channels between actors), which will be described further in

Section 3.2; configures actor parameters; lays out the graph

topology by instantiating connections between actor ports and

their incident FIFOs; and calls a user-defined scheduler that

is implemented based on the generated scheduling API.

3.2. Operational Contexts

In the TDIF environment, relevant state information of actors

is encapsulated by instances of a retargetable data structure

that is called the operational context. More specifically, the

operational context of an actor contains the execution con-

text (EC), which encapsulates actor parameters and state vari-

ables, and the topological context (TC) or dataflow context,

which encapsulates the set of incident ports, thereby defining

how the actor is connected as part of the enclosing dataflow

topology. Both the EC and TC are integrated within the run-

time library of the TDIF environment. Note that the presence

of actor state can be modeled in dataflow graphs through a

self-loop edge (an edge whose source and sink are connected

to the same actor), and the use of state can make actor pro-

gramming more convenient and scalable compared to purely

functional actor programming (e.g., see [13, 2]). Thus, state-

based actor programming is supported in TDIF.

Like actors in TDIF, each FIFO is also equipped with an

associated operational context. The FIFO operational context

includes information about the data type (token type) associ-

ated with the FIFO. For a given FIFO instance, there is a fixed

token size (number of bytes per token). Tokens can have arbi-

trary types — e.g., they can be integers, floating point values

(float or double), characters, or pointers (to any kind of

data). The FIFO operational context (FOC) is not “aware” of

its associated data type, only of the fixed token size. This or-

ganization allows for flexibility in storing different kinds of

data values, and efficiency in storing and accessing the data

values. A number of FOC utility functions are provided to

query FIFO status, including the capacity of the FIFO, num-

ber of tokens that are currently in the FIFO, and associated

token size (fixed number of bytes per token).

4. INSTRUMENTED SCHEDULE TREES

In the implementation of dataflow graphs, scheduling plays an

important role. Scheduling and more broadly, the interactions

among scheduling, inter-actor communication, and actor ex-

ecution, typically have major impact on key metrics, includ-

ing performance and memory usage [1]. Through the use of

the instrumentation methodology provided in the TDIF en-

vironment, designers can experiment with and tune different

scheduling techniques in order to assess their trade-offs, and

steer implementations towards effective solutions.

Our approach to instrumentation in TDIF is designed to

support the following key requirements: (a) no change in

functionality (instrumentation directives should not change

application functionality); (b) operations for adding and re-

moving instrumentation points should be performed by de-

signers in a way that is external to actors (i.e., does not inter-

fere with or require modification of actor code); and (c) in-

strumentation operations should be modular so that they can

be mixed, matched, and migrated with ease and flexibility.

Instrumentation support in TDIF builds on the general-

ized schedule tree (GST) representation, which provides a

standard graphical format for representing a broad class of

dataflow graph schedules [14]. In a GST, each leaf node refers

to an actor invocation, and each internal node n represents an

expression that is interpreted as an iteration count In for the

associated sub-tree (i.e., execution of the sub-tree rooted at n
is repeated In times).

In its schedule tuning mode, TDIF allows designers to

augment the GST representation with functional modules,

encapsulated as instrumentation nodes, which are dedicated

to instrumentation tasks. Like iteration nodes, instrumenta-

tion nodes are incorporated as internal nodes. We refer to

GSTs that are augmented with instrumentation nodes as in-

strumented GSTs (IGSTs). The instrumentation tasks associ-

ated with an instrumentation node are in general applied to

the corresponding IGST sub-tree.

An IGST allows software synthesis for a schedule to-

gether with instrumentation functionality that is integrated in

a precise and flexible format throughout the schedule. Upon

execution, software that is synthesized from an IGST pro-

duces profiling data (e.g., related to memory usage, perfor-

mance or power consumption) along with the output data that

is generated by the source application.

An instrumentation node in general has two associated

functions, pre and post , which represent instrumentation-

related computations (e.g., system calls, accesses to special-

ized memory locations, etc.) that are to be carried out just

before and after the associated IGST sub-tree executes.

Depending on the desired instrumentation functionality,

one or both of the functions pre and post can be used. If both

are used (e.g., for performance measurement), such an instru-

mentation node can be viewed as providing interval instru-

mentation, whereas if only one is used (e.g., to record mem-

ory usage), it can be viewed as point instrumentation.

Instrumentation nodes therefore provide a formal,

dataflow-integrated approach for specifying instrumentation

functionality in a manner that flexibly interacts with but is

cleanly separated from the code (schedule and actor code) that

it interacts with. Such orthogonalization across scheduling,

actor, and instrumentation functionality is a key strength of

TDIF, which adds to the modularity and productivity features

offered by the environment.

5. EXPERIMENTS

In this section, we present experiments with two application

examples that are developed using the TDIF environment.

Both applications are modeled as dynamic CFDF dataflow

graphs, where each actor has at least one process mode for

performing its main processing task. In each application, the

main processing pipeline can be statically scheduled. How-

ever, conditional dataflow sub-tasks in each application (e.g.,

for loading different coefficients, and handling end-of-file be-

havior) generally prevent the use of a global static schedule.

The applications are experimented with on a 3GHz PC with

an Intel CPU, 4GB RAM, and an NVIDIA GTX260 GPU.

The first application is a simple image processing appli-

cation centered around Gaussian filtering. Two dimensional

Gaussian filtering is a kernel in image processing that is com-

mon as a preprocessing step, and can be used to denoise an

image or prepare for multiresolution processing. The Gaus-

sian filter is convolved with the input image by centering a

matrix on each pixel and multiplying the value of each entry

in the matrix with the appropriate pixel and then summing the

results to produce the value of each new pixel. This operation

is repeated until the entire image has been created.

Fig. 2(a) shows the CFDF dataflow graph for the Gaus-

sian filtering application. The application reads bitmap files

in tile chunks, inverts the values of the pixels of each tile, runs

Gaussian filtering on the inverted tile, and then writes the re-

sult to an output bitmap file. Since in this design, the tiles

vary somewhat between edges, Gaussian filtering applied to

tiles must consider a limited neighborhood around each tile

(called a halo) for correct results. Thus, tiles produced by

bmp file reader overlap, while the halo is discarded af-

ter Gaussian filtering, and non-overlapping tiles are the input

to bmp file writer.

The experiment settings are illustrated in Fig. 2. In

the experiment, five matrices of Gaussian filter coefficients

are stored by the gaussian filter actor in its init

mode to allow for different standard deviations. Users

can configure which matrix will be used as well as the

halo value for evaluating filtering effects at run time. The

invert and gaussian filter actors are implemented

in both C and CUDA, and the bmp file reader and

bmp file writer actors are implemented in C.

We apply IGSTs, which are based on the CFDF canoni-

 !"#$%&

'()&

*+,-./#-$#01#$&

'2)&

*+,-./#-3$ %#$&

'4)&

50677 0!-./%#$&

'8)&

 !"#$%&%#'!(!)*+#,-!./#

 0"#1234#5*-#67!89!:;,#!..8<0!:*;#.6-5*-=!;06#

>#

?# @# $# &#

A#,$#& ,97%&

 B"#1234#5*-#67!89!:;,#!0(*-#.6-5*-=!;06#

?# @# $# &#

A#

>#

,$#& ,97%&

 !"#$%&#'()*#+',-./0$0&#(#$-1)

<=!,6#C<D6E#F>G#H#F>GI#:86#C<D6E#>GJ#H#>GJI#

K8(6-#C<D6E#FLHFMN#>>LH>>MN#G>LHG>MN#GFLHGFMN#*-#OPLHOPMI#

/!8*#C<D6E# K8(6-#C<D6"QGI#2RS#,-<'QB8*0T#C<D6E#JQ>U###

Fig. 2. Gaussian filtering application.

cal schedule [9], a standard type of schedule for CFDF graphs

that can be constructed quickly and is suitable for rapid pro-

totyping and bottleneck identification. Using the canonical

schedule along with selected instrumentation operations, we

derive two IGST variants, as shown in Fig. 2(b) and Fig. 2(c),

to evaluate gaussian filter actor and application per-

formance, respectively. In these figures, M represents an

instrumentation node used for interval instrumentation. The

measurement results are reported in Table 1.

Table 1. Performance of the gaussian filter actor (GF)

and the Gaussian filtering application (App) for C and CUDA

implementations.

Filter size 5X5 11X11 21X21 25X25 37X37

GF. C (ms) 50 280 1080 1540 3310

GF. CUDA (ms) 4.228 4.874 10.257 12.759 21.72

GF. Speedup 11.83 57.45 105.29 120.70 152.39

App. C (ms) 70 295 1100 1550 3340

App. CUDA (ms) 70 80 140 115 130

App. Speedup 1 3.69 7.86 13.48 25.69

As shown in Table 1, the CUDA implementations have su-

perior performance compared to the corresponding C imple-

mentations for these experiments. However, the application-

level speedups, while still significant, are consistently less

than the corresponding actor-level speedups. This is due to

factors such as context switch overhead and communication

cost for memory movement, which are associated with overall

schedule coordination in the application implementations.

The second application used in our experiments is an au-

dio processing application for 44.1 kHz to 48 kHz sampling

rate conversion (e.g., between compact disc and digital audio

tape formats). Fig. 3(a) shows the CFDF dataflow graph used

for this application. The application reads wav files that con-

tain data sampled at 44.1 kHz, runs a series of multirate filters

of finite impulse response to convert the sample rate, and then

writes the result to an output wav file that contains 48 kHz

data. This application is implemented in C.

In the experiment, we apply IGSTs for memory instru-

 !"#$

%&'$

()*+,-.+/.)0./$

%1'$

()*+,-.+(/23./$

% '$

 !"#$%&%#'!(!)*+#,-!./#

 !"4$

%5'$

 !"6$

%7'$

 !"8$

%9'$

 0"#1234#5*-#67!89!:;,#<6<*-=#9>!,6#?;#(/6#@A2@B#>0/6'986#

C# DC#
EF#

G#

DH#

DI#

J#

H#

DJ# @#

K#

L#

I# DM# N#

E#

$#

&#

%#

DE#

DL#

flat (147A)(147B)(98C)(56D)(40E)(160F)

APGAN (49(3AB)(2C))(8(7D)(5E(4F)))

DPPO (7(7(3AB)(2C))(8D))(40E(4F))

BCSM 600 ((120A)(60B)(30C)(17D)(12E)(48F))((27A)(45B)(29C)(16D)(11E)(44F))((42B)(28C)(16D)(12E)(48F))((11C)(7D)(5E)(20F))

BCSM 700 ((140A)(70B)(35C)(20D)(14E)(56F))((7A)(52B)(35C)(20D)(14E)(56F))((25)(28C)(16D)(12E)(48F))

BCSM 800 ((147A)(80B)(40C)(22D)(15E)(60F))((60B)(38C)(22D)(16E)(64F))((7B)(20C)(12D)(9E)(36F))

BCSM 900 ((147A)(90B)(45C)(25D)(17E)(68F))((57B)(43C)(25D)(18E)(72F))((10C)(6D)(5E)(20F))

BCSM 1000 ((147A)(100B)(50C)(28D)(20E)(80F))((47B)(48C)(28D)(20E)(80F))

 O"#30/6'986>#

Fig. 3. 44.1 kHz to 48 kHz sampling rate conversion.

mentation to evaluate schedules derived using a variety of

scheduling techniques — in particular, the techniques of flat

scheduling (flat), acyclic pairwise grouping of adjacent nodes

(APGAN), dynamic programming post optimization (DPPO),

and canonical scheduling (canonical). Details on the first

three scheduling techniques can be found in [15] and the

canonical scheduling is described in [9]. The APGAN and

DPPO scheduling techniques, which are handle the main pro-

cessing pipeline of this CD-DAT application, can be applied

statically, while the high level conditional behavior of the ap-

plication is processed before and after the main pipeline.

In addition, we apply a simple but effective buffer-

constrained, context-switch minimization (BCSM) heuristic

that operates as follows. Given a constraint on total avail-

able buffer size (e.g., 600 memory units for all FIFOs), and

a distribution of the available buffer size equally across all

of the application graph FIFOs (e.g. 600/5 = 120 units per

FIFO), a greedy approach is applied to minimize the rate of

inter-actor context switching subject to the available buffer

capacities — in particular, we start with the source actor, and

execute each actor as many times as possible (subject to avail-

able input data and the output buffer size) before moving on

to the next actor, and repeat the process until all actors have

been scheduled the corresponding numbers of times dictated

by the SDF repetitions vector [10].

Fig. 3(b) shows all of the derived schedules that we exper-

imented with for the sample rate conversion application, in-

cluding the results of BCSM with total buffer size constraints

of 600, 700, 800, 900, and 1000. These schedules are ex-

pressed in terms of looped schedule notation [15], where each

parenthesized term represents a loop whose iteration count is

given by the first (integer) sub-term in the term, and whose

loop body is given by the remaining sub-terms. For example,

the looped schedule (3A(2B)) contains two nested parenthe-

sized terms (“nested schedule loops”), and corresponds to the

execution sequence ABBABBABB .

Due to space limitations, we only show the IGST for eval-

uating memory usage in the APGAN schedule (Fig. 3(c)).

flat DPPO APGAN canonical BCSM 600 BCSM 700 BCSM 800 BCSM 900 BCSM 1000

CPU time 4.672 4.768 4.748 4.92 4.71 4.69 4.704 4.71 4.67

Total memory usage 1273 347 438 526 565 662 742 798 847

Total context switch 16206 1161430 1164131 2384400 64824 48618 48618 48618 32412

 !"#

$%%&#

'%(')#

!+,+-!.#
/012344#

/012544#
/012644#
/012744#

/0128444#

4#

944#

:44#

344#

644#

8444#

8944#

8:44#

:;3<# :;5# :;5<# :;6# :;6<# :;7# :;7<#

=
,
"!
.#
>
?
>
,
@A
#B
C!
D
?
#E
B
+
-"
F#

0%G#H>?#EC?*,+ICF#

Fig. 4. Instrumentation results for the CD-DAT application.

Here, nodes M1 through M7 represent point instrumentation

operations that keep track of the maximum population of each

buffer that is being monitored.

Fig. 4 reports the instrumentation results for total mem-

ory usage versus CPU time for the different schedules imple-

mented for the CD-DAT application. From the results, we can

derive Pareto points that provide information based on which

the designer can decide which scheduling strategy should be

chosen for a desired performance/memory-cost trade-off. The

ability to derive such Pareto points using a systematic, retar-

getable methodology based on high level dataflow representa-

tions is a valuable feature provided by the TDIF environment.

6. CONCLUSION

In this paper, we have introduced the Targeted DIF (TDIF)

environment as a novel software tool for design and imple-

mentation of multimedia signal processing systems. TDIF is

based on high level dataflow graphs, and provides a unique

integration of dynamic dataflow modeling; retargetable actor

construction; software synthesis; and instrumentation-based

schedule evaluation and tuning. We have presented two ap-

plication case studies to demonstrate the utility of the TDIF

environment. Useful directions for future work include the

development of hardware description language extensions to

the TDIF language and synthesis engine.

7. REFERENCES

[1] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and

J. Takala, Eds., Handbook of Signal Processing Systems,

Springer, 2010.

[2] J. Eker and J. W. Janneck, “CAL language report, lan-

guage version 1.0 — document edition 1,” Tech. Rep.

UCB/ERL M03/48, Electronics Research Laboratory,

University of California at Berkeley, December 2003.

[3] G. W. Johnson, LabVIEW Graphical Programming:

Practical Applications in Instrumentation and Control,

McGraw-Hill, 1997.

[4] J. L. Pino and K. Kalbasi, “Cosimulating synchronous

DSP applications with analog RF circuits,” in Proceed-

ings of the IEEE Asilomar Conference on Signals, Sys-

tems, and Computers, November 1998.

[5] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software syn-

thesis from the dataflow interchange format,” in Pro-

ceedings of the International Workshop on Software and

Compilers for Embedded Systems, September 2005, pp.

37–49.

[6] S. Kwon, H. Jung, and S. Ha, “H.264 decoder algorithm

specification and simulation in simulink and PeaCE,” in

Proceedings of the International SoC Design Confer-

ence, October 2004, pp. 9–12.

[7] W. Thies, M. Karczmarek, and S. Amarasinghe,

“StreamIt: A language for streaming applications,” in

Proceedings of the International Conference on Com-

piler Construction, 2002.

[8] L. F. Teixeira, L. G. Martins, M. Lagrange, and

G. Tzanetakis, “MarsyasX: multimedia dataflow pro-

cessing with implicit patching,” in Proceedings of the

ACM International Conference on Multimedia, 2008.

[9] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S.

Bhattacharyya, “Functional DIF for rapid prototyping,”

in Proceedings of the International Symposium on Rapid

System Prototyping, June 2008, pp. 17–23.

[10] E. A. Lee and D. G. Messerschmitt, “Synchronous

dataflow,” Proceedings of the IEEE, vol. 75, no. 9, pp.

1235–1245, September 1987.

[11] NVIDIA CUDA Compute Unified Device Architecture -

Programming Guide, 2007.

[12] C. Donnelly and R. Stallman, Bison – The Yacc-

compatible Parser Generator, August 2010.

[13] E. A. Lee, “Recurrences, iteration, and conditionals in

statically scheduled block diagram languages,” in Pro-

ceedings of the International Workshop on VLSI Signal

Processing, 1988.

[14] M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhat-

tacharyya, B. Kienhuis, and E. Deprettere, “Parame-

terized looped schedules for compact representation of

execution sequences in DSP hardware and software im-

plementation,” IEEE Transactions on Signal Process-

ing, vol. 55, no. 6, pp. 3126–3138, June 2007.

[15] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Soft-

ware Synthesis from Dataflow Graphs, Kluwer Aca-

demic Publishers, 1996.

