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ABSTRACT 

 

Motion Capture (MoCap) is becoming important in many 

areas of technology, science, and art, including graphics, 

visualization, gaming, and medical applications. In parallel 

with its increased use and abundance, compression of this 

kind of data is becoming more important. In this paper, we 

propose a hybrid low-delay compression scheme for MoCap 

data that is particularly suitable for interactive applications 

such as online gaming or telemedicine. Experimental results 

confirm the superiority of the proposed approach against 

state-of-the-art methods for MoCap compression in both 

compression efficiency and delay, making it suitable for 

interactive applications.  
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1. I�TRODUCTIO� 

 

Motion
 
 Capture (MoCap) has sparked a revolution in the 

way people play computer games. In addition to this well-

known use scenario adopted by major gaming platforms 

(Wii, Xbox, and PlayStation), MoCap is finding use in an 

increasing number of other applications, including 

entertainment [1], arts [2], and rehabilitation [3]. In parallel 

with its increased use and abundance, compression of 

MoCap data is becoming more important. The type of 

compression that is appropriate for a particular application 

depends on various requirements of that application. For 

storage, compression efficiency and the ease of browsing 

and indexing are usually the most important criteria. For 

interactive applications such as online gaming, real-time 

encoding and decoding, as well as low delay, are crucial.  

In the case of human skeletal MoCap data, 41 motion 

markers are usually placed on the subject according to the 

marker placement guide [4] to capture the movement of all 

flexible joints of the skeleton. In other cases, appropriate 

number of markers can be placed according to the specific 

application requirement, e.g., hand or face animation. Two 

of the most popular MoCap file formats are C3D and BVH. 
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A C3D file contains the global 3D coordinates of each 

marker at each sampling instant. On the other hand, BVH 

data is obtained by processing global 3D marker coordinates 

to obtain the position of each joint of the human skeleton, 

possibly at instants different from marker position sampling 

instants. Hence, BVH data really represents (an estimate of) 

the articulated human skeletal movement. The two types of 

data are illustrated in Fig. 1, where we show C3D data 

(marker locations) as black squares, and BVH data (human 

skeletal joints) as red circles connected by skeletal bones. 

To facilitate comparison with prior work, all experiments in 

this paper are based on C3D human skeletal MoCap data. 

However, the proposed approach is rather general and 

applicable to other kinds of MoCap data as well.  

 

 

C3D

BVH

 
Fig. 1. Human Motion Capture (MoCap) data: global positions of 

markers (C3D) vs. locations of articulated joints (BVH). 

In this paper we propose a low-delay compression 

method for MoCap data, which is appropriate for interactive 

applications (e.g., online gaming) that cannot tolerate large 

encoding delay. Experimental results demonstrate that 

despite having a much lower encoding delay than the state-

of-the-art MoCap compression methods, our approach is 

able to deliver superior compression efficiency as well. Prior 

work on MoCap data compression is reviewed in Section 2. 

In Section 3, we describe the details of the proposed 

compression approach. Experimental results are presented in 

Section 4, and conclusions are drawn in Section 5.  

 

2. PRIOR WORK O� MOCAP DATA COMPRESSIO� 

 

Due to the physical continuity of real object motion 

trajectories in space, MoCap data exhibits high redundancy 
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in the temporal direction. Several methods have been 

proposed in recent years to exploit this redundancy for 

MoCap data compression. Principal Component Analysis 

(PCA) [7], [8] is one of the popular techniques widely used 

in this field due to its dimensionality-reduction properties. 

For example, the global PCA (GPCA) approach [7] applies 

PCA to the entire MoCap sequence and retains the 

eigenvectors that account for most of the signal energy. The 

threshold on how much error can be globally tolerated 

determines how many eigenvectors are kept. Projection of 

MoCap data onto the space spanned by the retained 

eigenvectors is then encoded. The downside of this method 

is that the characteristics of the motion may change 

considerably over a long sequence, so GPCA typically needs 

to retain more eigenvectors than would be necessary if the 

PCA were to be applied locally. 

To mitigate this problem, a piecewise PCA can be 

applied to shorter segments of motion. To apply piecewise 

PCA, one needs to determine the points in time where the 

motion changes significantly. These points, sometimes 

called “key frames,” mark the positions where the PCA 

eigenvectors should change in order to better approximate 

the motion in the next segment. In [8], two such approaches 

have been examined. In one approach, which we shall refer 

to as PPCA, piecewise PCA is applied directly to the 

segments in-between the identified key frames. In another 

approach, which we shall call SEG, PCA is applied in 

conjunction with spline interpolation within each segment to 

further exploit temporal coherence of MoCap data. Related 

approaches based on motion segmentation have been 

proposed in [9] and [10]. There have also been proposals to 

modify PCA to a transform that is more appropriate for 

approximating human motion. For example, in [11], a the 

extension of PCA named Principal Geodesic Analysis 

(PGA) is used for MoCap data compression. In this scheme, 

which was developed specifically for articulated human 

skeletal motion (e.g., BVH files), one needs the positions of 

end-joints and root joints across time during a motion 

segment before PGA can be applied. All these methods 

impose a certain encoding delay due to the fact that the 

redundancy-removal (through PCA or its variation) is 

applied temporally, which means that a number of MoCap 

data frames have to be captured and stored before 

compression of the first frame in the segment can start. Such 

approach is not suitable for interactive applications.  

PCA is not the only way to remove temporal 

redundancy from MoCap data. For example, the approach in 

[12], which uses Body Animation Parameters (BAPs), 

analyzes motion across time and creates a dictionary of most 

frequent patterns, which are then used for indexing BAPs of 

individual frames. In this approach, the entire MoCap 

sequence needs to be processed before compression can 

start, which again makes it unsuitable for interactive 

applications. MPEG-4 Bone Based Animation (BBA) 

described in [5] and [6] uses two other methods for 

removing temporal redundancy. In one approach, temporal 

differencing of neighboring frames is used, while in the 

other approach, Discrete Cosine Transform (DCT) is applied 

temporally across 16 consecutive MoCap frames. The latter 

approach introduces 15 frame encoding delay, which may 

make it unsuitable for interactive applications. The former 

approach has no encoding delay, however it's compression 

efficiency is not particularly good, as will be seen in the 

results in Section 4. 

 

3. HYBRID LOW-DELAY MOCAP DATA 

COMPRESSIO� 

 

Each frame f [n] of raw MoCap data consists of global x-, y-, 

and z-coordinates of each marker: 

f [n] = (x1[n], y1[n], z1[n], ..., xm[n], ym[n], zm[n])
T
,     (1) 

where m is the number of markers and n is the frame index. 

In MoCap data, redundancy exists temporally (e.g., between 

f [n] and f [n+1]) as well as spatially (e.g., between xi[n] and 

xj[n]). In order to remove both types of redundancy, we 

employ the so-called ‘hybrid’ strategy from video 

compression, where two different kinds of redundancy 

removal are applied in spatial and temporal direction. In 

particular, to satisfy the low-delay requirement, we use 

differential encoding temporally, while for spatial 

redundancy removal we use the Discrete Cosine Transform 

(DCT). The block diagram of the proposed MoCap encoder 

is shown in Fig. 2 below. Its structure is similar to well-

known hybrid video encoders, with appropriate 

modifications to make it suitable for MoCap compression. 

This structure provides both low delay and high compression 

efficiency, as will be shown in Section 4. In the remainder of 

this section we describe various encoder components.  

 

 

Fig.  2. Block diagram of the proposed hybrid MoCap encoder. 

 

3.1. Reordering of MoCap data 

One of the reasons for the success of transform-based image 

and video coding is that in natural images, most of the signal 

energy is concentrated at low frequencies. This fact is 

exploited by spatial transforms such as DCT and wavelets. 



MoCap data does not exhibit such a behavior. An illustration 

is given in Fig. 3, where we show amplitudes of DCT 

coefficients of several frames from the MoCap sequence 

85_12, which is one of the test sequences used in the 

experiments in Section 4. As seen in the figure, a substantial 

amount of signal energy is at high frequencies. The reason is 

that groups of markers are often clustered together in the 3D 

space (e.g., near the feet of the skeleton in Fig. 1), which 

results in their x-, y-, and z-coordinates having similar 

values, i.e., 

xi[n] ≈ xi+1[n] ≈ ... ≈ xi+k[n],                      (2) 

where k is the size of the cluster, and similarly for the y- and 

z-coordinates. This creates local periodicities in f [n], which 

gives rise to energy at higher frequencies. For this reason, 

we reorder the components of f [n] into a new vector g [n] 

where x-, y-, and z-coordinates are grouped together: 

g [n] = (x1[n],..., xm[n], y1[n],..., ym[n], z1[n],...,  zm[n])
T
.  (3) 

This reordering is a linear transformation of the vector f [n], 

which can be represented in the following form 

g [n] = A f [n],                                 (4) 

where A is the (3m)×(3m) circulant matrix shown below.  
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After such a transformation, the energy in vector g [n] 

becomes concentrated at low frequencies. An illustration is 

given in Fig. 4, which shows the amplitudes of DCT 

coefficients of the set of frames from Fig. 3 after reordering. 

This linear reordering is the first component of our MoCap 

encoder, represented by A in Fig. 2. After reordering, the 

characteristics of MoCap frames become more similar to the 

characteristics of natural images. This improves the chance 

of spatial transform to provide efficient compression without 

explicit modeling of the spatial configuration of markers, 

which in turn makes our method applicable to a wide range 

of MoCap data, not only human skeletal data.  

 

3.2. Predictive coding 

The sampling frequency of MoCap data is usually fairly high 

compared to video, typically 120 frames per second (fps), so 

high compression gain is expected from temporal predictive 

coding. In particular, due to the close temporal spacing 

between neighboring MoCap frames, the most recent 

previous frame usually provides a very good prediction of 

the current frame.  
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Fig. 3. Amplitudes of DCT coefficients of several frames f from 

MoCap sequence 85_12. 
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Fig. 4. Amplitudes of DCT coefficients of reordered MoCap 

frames g = Af corresponding frames f from Fig. 3. 

 

We define two types of MoCap frames: Long-Term 

Reference (LTR) frames, which are encoded either in the 

intra-mode, or predictively from the previous LTR frame, 

and Short-Term Reference (STR) frames, which are encoded 

predictively from the immediately preceding frame, be it 

LTR or STR. The first frame in the sequence is always an 

intra-coded LTR frame. In the experiments in Section 4, all 

LTR frames after the first one were coded predictively. LTR 

frames were repeated at regular intervals (every 30 or 60 

frames, as indicated in the particular set of results), while all 

other frames were encoded as STR frames.  

Predictive coding loop in Fig. 2 includes a memory 

buffer for two frames, one LTR frame, and one STR frame. 

Both buffers contain the most recent frame of each type. 

When an LTR frame is being encoded, the switch points to 

the LTR buffer and prediction is performed from the 



previous LTR frame. After reconstruction, this LTR frame 

replaces the previous LTR frame in the LTR buffer. The 

switch remains in the same position for encoding the next 

STR frame (i.e., the first frame following an LTR frame), 

after which the switch is pointed to the STR frame buffer 

and remains there until the next LTR frame. This prediction 

structure also allows simple temporal scalability, since LTR 

frames can be decoded at a lower frame rate independently 

of STR frames. 

 

3.3. DCT transform 

DCT transform is applied spatially to each frame. If m is the 

number of markers, each frame is a vector of length 3m, so a 

one-dimensional DCT of length 3m is used. DCT is applied 

directly on the first frame (after subtracting the mean), while 

for subsequent LTR or STR frames, DCT is applied to the 

prediction residual, as indicated in Fig. 2. In Section 3.1, we 

showed that linear reordering of MoCap data makes the 

energy concentrate at low frequencies, which in turn makes 

spatial transform more effective in compression. With such 

an arrangement, our system does not require spatial 

modeling of the marker configuration, which is necessarily 

application-specific. Instead of geometric constraints, we 

can exploit statistical redundancy of reordered data through 

spatial DCT.  

 

3.4. Quantization 

Upon transformation, DCT coefficients are quantized using 

a uniform mid-tread quantizer denoted by Q in Fig. 2. The 

reverse quantization block is denoted by IQ. The quanti-

zation step size (∆) can be chosen to achieve the desired 
tradeoff between reconstruction quality and compression 

efficiency. Different step sizes can be chosen for LTR and 

STR frames. As in video compression, the step size for LTR 

frames will normally be lower than the step size for STR 

frames. This makes LTR frames of higher relative quality 

and ensures better prediction of subsequent STR frames.  

In applications where the dynamic range of the signal is 

known in advance, the number of quantization bins B is 

usually determined as the ratio of the dynamic range and ∆. 
However, the dynamic range of MoCap data, as well as the 

dynamic range of DCT coefficients, may vary within a 

sequence. For example, if the subject moves away from the 

chosen origin of the 3D coordinate system, the x and y 

components of f [n] will tend to increase with n. Further, the 

dynamic range cannot be determined in advance in low-

delay applications, since one would have to buffer and 

examine all data in order to find the minimum and 

maximum. Unless some precautions are made, with a fixed 

∆, the number of quantization bins would vary, which would 

complicate the encoding of quantization bin indices. To 

mitigate this problem, we examined the dynamic range of 

DCT coefficients on a large set of MoCap data [13], and 

determined the appropriate number of bins for various 

values of ∆. That way, when a particular ∆ is chosen, the 
encoder simply finds the appropriate number of bins B from 

a look-up table. A segment of this look-up table is shown in 

Table 1. The outermost quantization bins are left open on 

one side, i.e. the lowest quantization bin is (−∞, −(B−2)∆/2), 
and the highest quantization bin is [(B−2)∆/2, ∞). Their 

reconstruction levels are −(B−1)∆/2 and (B−1)∆/2, respec-
tively. If a particular DCT coefficient is too large or too 

small and falls into one of these bins, its quantization error 

may be larger than ∆/2, which is known as “overload noise.” 
However, with the look-up table designed on the dataset 

from [13], the occurrence of overload noise is so infrequent 

that it does not affect compression efficiency appreciably.  

 

Table 1. Part of the look-up table with quantization step sizes (∆) 
and the corresponding number of bins (B). 

∆∆∆∆ �umber of bins (B) 

≥ 100 25 

33.3 49 

16.7 73 

10.0 97 

7.7 121 

 

 

3.5. Entropy coding 

Entropy coding is the last stage of the encoder in Fig. 2. For 

this purpose, we use the range coder [14], [15], which is a 

particular implementation of adaptive arithmetic coding. The 

entropy coder maintains two histograms of quantization bin 

counts, one for LTR frames, the other for STR frames. Each 

histogram is updated with each encoding of an LTR or STR 

frame. Once the encoding of a particular frame (LTR or 

STR) is completed, the encoder buffer is flushed, but the 

histogram is carried over for encoding the next frame of the 

same type. That way, the encoder can adapt to the changing 

statistics of quantization bin occurrences in different types of 

frames. The STR-frame histogram is reset to uniform after 

each LTR frame. The decoder follows the same procedure to 

track the histogram evolution at the encoder.  

 

4. EXPERIME�TAL RESULTS 

 

To facilitate comparison with prior work, in particular the 

methods called SEG, GPCA, and PPCA in Section 2, we 

used four MoCap sequences from the CMU database [13]. 

These four test sequences were also used in [8]. Their 

description is summarized in Table 2. Each test sequence 

contains a number of frames with 3D locations of m = 41 

markers in C3D format. The frame rate of each sequence is 

120 fps. Each coordinate of each marker is represented by 

an 8-byte floating point number, so the total uncompressed 

file size is given by  

file size = 3 × 41 × (number of frames) × (8 bytes). 



Table 2. MoCap test sequences from [13]. 

Sequence Type of motion Total frames Size (kbytes) 

13_29 Jumping, … 4592 4413 

85_12 Breakdance, … 4499 4324 

86_02 Walk, squats, … 10590 10177 

86_08 Walk, squats, … 9206 8847 

 

In the field of MoCap compression, it is customary to 

measure compression efficiency in terms of the recon-

struction error and the compression ratio. The compression 

ratio is simply the ratio of the uncompressed file size (Table 

2) and the compressed file size. The reconstruction error is 

commonly measured by the so-called “distortion rate” d [8], 

defined as: 

( )FF

FF

E
d

−

−
=

~

100 ,                            (6) 

where F is a (3m) × K matrix containing all the original 

frames f [n] as columns, K is the total number of frames, F
~
 

is the matrix containing all reconstructed frames, E(F) 

represents the temporal average values of marker 

coordinates, and || ⋅ || denotes the Euclidean norm.  

We compare several MoCap compression methods in 

terms of d and compression ratio. Methods called SEG, 

GPCA, and PPCA were described in Section 2. DPCM 

(Differential Pulse Code Modulation) is a simple predictive 

encoding method where each frame is predicted from the 

previous one, and the prediction residual is directly 

quantized and encoded without spatial transform. It is 

equivalent to one of the MPEG-4 BBA compression 

methods mentioned in Section 2, except that here it is 

applied to raw MoCap data rather than articulated human 

joints. DPCM+t_DCT_% for % ∈ {30, 60} is similar to the 

other MPEG-4 BBA compression scheme from Section 2. 

This method follows up temporal DPCM by temporal DCT 

applied over % frames. Our method is labeled Hybrid_%, 

where % ∈ {30, 60} denotes the period of LTR frames.  

All methods are summarized in Table 3, which lists 

their encoding delay in frames. Encoding delay is the 

number of frames that the encoder has to buffer and process 

before starting to encode the first frame. The encoding delay 

of our method and that of DPCM is 0, because encoding of 

the frame can start as soon as the frame is captured. This 

makes these two methods particularly suitable for low-delay 

interactive applications such as online gaming. Meanwhile, 

the encoding delay of DPCM+t_DCT_% is % − 1, since the 
entire group of % frames needs to be buffered before 

encoding can start. SEG and PPCA have variable delay 

because they apply PCA over an adaptively segmented 

group of frames. The particular segmentation employed in 

[8] starts with a group of 200 frames and then increases it in 

steps of 10 as necessary. Hence the encoding delay of these 

two schemes is no less than 200. Finally, GPCA needs to 

process all frames in the sequence prior to encoding. 

Table 3. Encoding delay (in frames) for various methods 

Compression method Encoding delay (frames) 

SEG Variable (≥ 200) 
GPCA All frames in the sequence 

PPCA Variable (≥ 200) 
DPCM 0 

DPCM+t_DCT_% %−1 
Hybrid_% 0 

 

The results are shown in Figs. 5 – 8 for the sequences 

from Table 2. The results for SEG, GPCA, and PPCA are 

obtained from [8], where they were reported for only one 

compression ratio. Hence, we only show one point in each 

graph for each of these three methods. On the other hand, by 

varying the quantization step size ∆, we can obtain various 
compression ratios and reconstruction qualities for the 

remaining three methods including ours. Hence, DPCM, 

DPCM+t_DCT_%, and Hybrid_% are represented by curves, 

rather than single points. 
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Fig. 5. Compression performance on MoCap sequence 13_29. 

0 200 400 600 800
0

5

10

15

compression ratio

d

 

 

SEG

GPCA

PPCA

DPCM + t_DCT_30

DPCM + t_DCT_60

Hybrid_30

Hybrid_60

DPCM

 

Fig. 6. Compression performance on MoCap sequence 85_12. 
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Fig. 7. Compression performance on MoCap sequence 86_02. 
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Fig. 8. Compression performance on MoCap sequence 86_08. 

 

As seen in the results, DPCM+t_DCT_% has the best 

compression performance (highest compression ratio for a 

given reconstruction quality) among all the tested methods. 

As % increases, the compression efficiency increases, but the 

encoding delay increases as well. Even with % = 30 and 

sampling rate of 120 Hz, the encoding delay is equivalent to 

a quarter of a second, which is likely to be too large for 

interactive online gaming, considering that this is not the 

only source of delay in the overall end-to-end system. When 

% = 1, this scheme reduces to simple DPCM. In that case the 

encoding delay is eliminated, but the compression 

performance suffers. On the other hand, through the use of 

data reordering and spatial DCT, our scheme is able to 

achieve high compression efficiency and low delay 

simultaneously. All these three methods (DPCM, Hybrid_%, 

and DPCM+t_DCT_%) show considerably better recon-

struction quality than SEG, GPCA, and PPCA over the 

range of compression ratios where they can be compared. 

 

5. CO�CLUSIO�S 

 

In this paper, we have demonstrated the potential of hybrid 

encoding structure (temporal prediction + spatial transform), 

which has evolved in video coding, for MoCap data 

compression. A simple linear reordering makes such a 

structure an efficient encoder for MoCap data. The results 

indicate that the hybrid structure offers both improved 

compression efficiency and lower encoding delay compared 

to several state-of-the-art methods.  
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