
HYBRID LOW-DELAY COMPRESSIO� OF MOTIO� CAPTURE DATA

Choong-Hoon Kwak and Ivan V. Bajić

School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada

ABSTRACT

Motion Capture (MoCap) is becoming important in many

areas of technology, science, and art, including graphics,

visualization, gaming, and medical applications. In parallel

with its increased use and abundance, compression of this

kind of data is becoming more important. In this paper, we

propose a hybrid low-delay compression scheme for MoCap

data that is particularly suitable for interactive applications

such as online gaming or telemedicine. Experimental results

confirm the superiority of the proposed approach against

state-of-the-art methods for MoCap compression in both

compression efficiency and delay, making it suitable for

interactive applications.

Keywords— Motion capture, MoCap data compression,

transform coding, hybrid coding

1. I�TRODUCTIO�

Motion

 Capture (MoCap) has sparked a revolution in the

way people play computer games. In addition to this well-

known use scenario adopted by major gaming platforms

(Wii, Xbox, and PlayStation), MoCap is finding use in an

increasing number of other applications, including

entertainment [1], arts [2], and rehabilitation [3]. In parallel

with its increased use and abundance, compression of

MoCap data is becoming more important. The type of

compression that is appropriate for a particular application

depends on various requirements of that application. For

storage, compression efficiency and the ease of browsing

and indexing are usually the most important criteria. For

interactive applications such as online gaming, real-time

encoding and decoding, as well as low delay, are crucial.

In the case of human skeletal MoCap data, 41 motion

markers are usually placed on the subject according to the

marker placement guide [4] to capture the movement of all

flexible joints of the skeleton. In other cases, appropriate

number of markers can be placed according to the specific

application requirement, e.g., hand or face animation. Two

of the most popular MoCap file formats are C3D and BVH.

 This work was supported in part by the NSERC/CCA New Media Grant

STPGP 350740. E-mail: cka21@sfu.ca, ibajic@ensc.sfu.ca.

A C3D file contains the global 3D coordinates of each

marker at each sampling instant. On the other hand, BVH

data is obtained by processing global 3D marker coordinates

to obtain the position of each joint of the human skeleton,

possibly at instants different from marker position sampling

instants. Hence, BVH data really represents (an estimate of)

the articulated human skeletal movement. The two types of

data are illustrated in Fig. 1, where we show C3D data

(marker locations) as black squares, and BVH data (human

skeletal joints) as red circles connected by skeletal bones.

To facilitate comparison with prior work, all experiments in

this paper are based on C3D human skeletal MoCap data.

However, the proposed approach is rather general and

applicable to other kinds of MoCap data as well.

C3D

BVH

Fig. 1. Human Motion Capture (MoCap) data: global positions of

markers (C3D) vs. locations of articulated joints (BVH).

In this paper we propose a low-delay compression

method for MoCap data, which is appropriate for interactive

applications (e.g., online gaming) that cannot tolerate large

encoding delay. Experimental results demonstrate that

despite having a much lower encoding delay than the state-

of-the-art MoCap compression methods, our approach is

able to deliver superior compression efficiency as well. Prior

work on MoCap data compression is reviewed in Section 2.

In Section 3, we describe the details of the proposed

compression approach. Experimental results are presented in

Section 4, and conclusions are drawn in Section 5.

2. PRIOR WORK O� MOCAP DATA COMPRESSIO�

Due to the physical continuity of real object motion

trajectories in space, MoCap data exhibits high redundancy

978-1-61284-350-6/11/$26.00 ©2011 IEEE

in the temporal direction. Several methods have been

proposed in recent years to exploit this redundancy for

MoCap data compression. Principal Component Analysis

(PCA) [7], [8] is one of the popular techniques widely used

in this field due to its dimensionality-reduction properties.

For example, the global PCA (GPCA) approach [7] applies

PCA to the entire MoCap sequence and retains the

eigenvectors that account for most of the signal energy. The

threshold on how much error can be globally tolerated

determines how many eigenvectors are kept. Projection of

MoCap data onto the space spanned by the retained

eigenvectors is then encoded. The downside of this method

is that the characteristics of the motion may change

considerably over a long sequence, so GPCA typically needs

to retain more eigenvectors than would be necessary if the

PCA were to be applied locally.

To mitigate this problem, a piecewise PCA can be

applied to shorter segments of motion. To apply piecewise

PCA, one needs to determine the points in time where the

motion changes significantly. These points, sometimes

called “key frames,” mark the positions where the PCA

eigenvectors should change in order to better approximate

the motion in the next segment. In [8], two such approaches

have been examined. In one approach, which we shall refer

to as PPCA, piecewise PCA is applied directly to the

segments in-between the identified key frames. In another

approach, which we shall call SEG, PCA is applied in

conjunction with spline interpolation within each segment to

further exploit temporal coherence of MoCap data. Related

approaches based on motion segmentation have been

proposed in [9] and [10]. There have also been proposals to

modify PCA to a transform that is more appropriate for

approximating human motion. For example, in [11], a the

extension of PCA named Principal Geodesic Analysis

(PGA) is used for MoCap data compression. In this scheme,

which was developed specifically for articulated human

skeletal motion (e.g., BVH files), one needs the positions of

end-joints and root joints across time during a motion

segment before PGA can be applied. All these methods

impose a certain encoding delay due to the fact that the

redundancy-removal (through PCA or its variation) is

applied temporally, which means that a number of MoCap

data frames have to be captured and stored before

compression of the first frame in the segment can start. Such

approach is not suitable for interactive applications.

PCA is not the only way to remove temporal

redundancy from MoCap data. For example, the approach in

[12], which uses Body Animation Parameters (BAPs),

analyzes motion across time and creates a dictionary of most

frequent patterns, which are then used for indexing BAPs of

individual frames. In this approach, the entire MoCap

sequence needs to be processed before compression can

start, which again makes it unsuitable for interactive

applications. MPEG-4 Bone Based Animation (BBA)

described in [5] and [6] uses two other methods for

removing temporal redundancy. In one approach, temporal

differencing of neighboring frames is used, while in the

other approach, Discrete Cosine Transform (DCT) is applied

temporally across 16 consecutive MoCap frames. The latter

approach introduces 15 frame encoding delay, which may

make it unsuitable for interactive applications. The former

approach has no encoding delay, however it's compression

efficiency is not particularly good, as will be seen in the

results in Section 4.

3. HYBRID LOW-DELAY MOCAP DATA

COMPRESSIO�

Each frame f [n] of raw MoCap data consists of global x-, y-,

and z-coordinates of each marker:

f [n] = (x1[n], y1[n], z1[n], ..., xm[n], ym[n], zm[n])
T
, (1)

where m is the number of markers and n is the frame index.

In MoCap data, redundancy exists temporally (e.g., between

f [n] and f [n+1]) as well as spatially (e.g., between xi[n] and

xj[n]). In order to remove both types of redundancy, we

employ the so-called ‘hybrid’ strategy from video

compression, where two different kinds of redundancy

removal are applied in spatial and temporal direction. In

particular, to satisfy the low-delay requirement, we use

differential encoding temporally, while for spatial

redundancy removal we use the Discrete Cosine Transform

(DCT). The block diagram of the proposed MoCap encoder

is shown in Fig. 2 below. Its structure is similar to well-

known hybrid video encoders, with appropriate

modifications to make it suitable for MoCap compression.

This structure provides both low delay and high compression

efficiency, as will be shown in Section 4. In the remainder of

this section we describe various encoder components.

Fig. 2. Block diagram of the proposed hybrid MoCap encoder.

3.1. Reordering of MoCap data

One of the reasons for the success of transform-based image

and video coding is that in natural images, most of the signal

energy is concentrated at low frequencies. This fact is

exploited by spatial transforms such as DCT and wavelets.

MoCap data does not exhibit such a behavior. An illustration

is given in Fig. 3, where we show amplitudes of DCT

coefficients of several frames from the MoCap sequence

85_12, which is one of the test sequences used in the

experiments in Section 4. As seen in the figure, a substantial

amount of signal energy is at high frequencies. The reason is

that groups of markers are often clustered together in the 3D

space (e.g., near the feet of the skeleton in Fig. 1), which

results in their x-, y-, and z-coordinates having similar

values, i.e.,

xi[n] ≈ xi+1[n] ≈ ... ≈ xi+k[n], (2)

where k is the size of the cluster, and similarly for the y- and

z-coordinates. This creates local periodicities in f [n], which

gives rise to energy at higher frequencies. For this reason,

we reorder the components of f [n] into a new vector g [n]

where x-, y-, and z-coordinates are grouped together:

g [n] = (x1[n],..., xm[n], y1[n],..., ym[n], z1[n],..., zm[n])
T
. (3)

This reordering is a linear transformation of the vector f [n],

which can be represented in the following form

g [n] = A f [n], (4)

where A is the (3m)×(3m) circulant matrix shown below.



































=

MMMMMMMMM

L

L

MMMMMMMMM

LL

LL

MMMMMMMMM

LLL

LLL

00100000

00000100

0010000

0000010

001000

000001

A . (5)

After such a transformation, the energy in vector g [n]

becomes concentrated at low frequencies. An illustration is

given in Fig. 4, which shows the amplitudes of DCT

coefficients of the set of frames from Fig. 3 after reordering.

This linear reordering is the first component of our MoCap

encoder, represented by A in Fig. 2. After reordering, the

characteristics of MoCap frames become more similar to the

characteristics of natural images. This improves the chance

of spatial transform to provide efficient compression without

explicit modeling of the spatial configuration of markers,

which in turn makes our method applicable to a wide range

of MoCap data, not only human skeletal data.

3.2. Predictive coding

The sampling frequency of MoCap data is usually fairly high

compared to video, typically 120 frames per second (fps), so

high compression gain is expected from temporal predictive

coding. In particular, due to the close temporal spacing

between neighboring MoCap frames, the most recent

previous frame usually provides a very good prediction of

the current frame.

0 50 100 150
-5000

0

5000

10000

DCT coefficient index

D
C

T
 C

o
e
ff
ic

ie
n
t
a
m

p
lit

u
d
e

Fig. 3. Amplitudes of DCT coefficients of several frames f from

MoCap sequence 85_12.

0 50 100 150
-1

-0.5

0

0.5

1
x 10

4

DCT coefficient index

D
C

T
 C

o
e
ff
ic

ie
n
t
a
m

p
lit

u
d
e

Fig. 4. Amplitudes of DCT coefficients of reordered MoCap

frames g = Af corresponding frames f from Fig. 3.

We define two types of MoCap frames: Long-Term

Reference (LTR) frames, which are encoded either in the

intra-mode, or predictively from the previous LTR frame,

and Short-Term Reference (STR) frames, which are encoded

predictively from the immediately preceding frame, be it

LTR or STR. The first frame in the sequence is always an

intra-coded LTR frame. In the experiments in Section 4, all

LTR frames after the first one were coded predictively. LTR

frames were repeated at regular intervals (every 30 or 60

frames, as indicated in the particular set of results), while all

other frames were encoded as STR frames.

Predictive coding loop in Fig. 2 includes a memory

buffer for two frames, one LTR frame, and one STR frame.

Both buffers contain the most recent frame of each type.

When an LTR frame is being encoded, the switch points to

the LTR buffer and prediction is performed from the

previous LTR frame. After reconstruction, this LTR frame

replaces the previous LTR frame in the LTR buffer. The

switch remains in the same position for encoding the next

STR frame (i.e., the first frame following an LTR frame),

after which the switch is pointed to the STR frame buffer

and remains there until the next LTR frame. This prediction

structure also allows simple temporal scalability, since LTR

frames can be decoded at a lower frame rate independently

of STR frames.

3.3. DCT transform

DCT transform is applied spatially to each frame. If m is the

number of markers, each frame is a vector of length 3m, so a

one-dimensional DCT of length 3m is used. DCT is applied

directly on the first frame (after subtracting the mean), while

for subsequent LTR or STR frames, DCT is applied to the

prediction residual, as indicated in Fig. 2. In Section 3.1, we

showed that linear reordering of MoCap data makes the

energy concentrate at low frequencies, which in turn makes

spatial transform more effective in compression. With such

an arrangement, our system does not require spatial

modeling of the marker configuration, which is necessarily

application-specific. Instead of geometric constraints, we

can exploit statistical redundancy of reordered data through

spatial DCT.

3.4. Quantization

Upon transformation, DCT coefficients are quantized using

a uniform mid-tread quantizer denoted by Q in Fig. 2. The

reverse quantization block is denoted by IQ. The quanti-

zation step size (∆) can be chosen to achieve the desired
tradeoff between reconstruction quality and compression

efficiency. Different step sizes can be chosen for LTR and

STR frames. As in video compression, the step size for LTR

frames will normally be lower than the step size for STR

frames. This makes LTR frames of higher relative quality

and ensures better prediction of subsequent STR frames.

In applications where the dynamic range of the signal is

known in advance, the number of quantization bins B is

usually determined as the ratio of the dynamic range and ∆.
However, the dynamic range of MoCap data, as well as the

dynamic range of DCT coefficients, may vary within a

sequence. For example, if the subject moves away from the

chosen origin of the 3D coordinate system, the x and y

components of f [n] will tend to increase with n. Further, the

dynamic range cannot be determined in advance in low-

delay applications, since one would have to buffer and

examine all data in order to find the minimum and

maximum. Unless some precautions are made, with a fixed

∆, the number of quantization bins would vary, which would

complicate the encoding of quantization bin indices. To

mitigate this problem, we examined the dynamic range of

DCT coefficients on a large set of MoCap data [13], and

determined the appropriate number of bins for various

values of ∆. That way, when a particular ∆ is chosen, the
encoder simply finds the appropriate number of bins B from

a look-up table. A segment of this look-up table is shown in

Table 1. The outermost quantization bins are left open on

one side, i.e. the lowest quantization bin is (−∞, −(B−2)∆/2),
and the highest quantization bin is [(B−2)∆/2, ∞). Their

reconstruction levels are −(B−1)∆/2 and (B−1)∆/2, respec-
tively. If a particular DCT coefficient is too large or too

small and falls into one of these bins, its quantization error

may be larger than ∆/2, which is known as “overload noise.”
However, with the look-up table designed on the dataset

from [13], the occurrence of overload noise is so infrequent

that it does not affect compression efficiency appreciably.

Table 1. Part of the look-up table with quantization step sizes (∆)
and the corresponding number of bins (B).

∆∆∆∆ �umber of bins (B)

≥ 100 25

33.3 49

16.7 73

10.0 97

7.7 121

3.5. Entropy coding

Entropy coding is the last stage of the encoder in Fig. 2. For

this purpose, we use the range coder [14], [15], which is a

particular implementation of adaptive arithmetic coding. The

entropy coder maintains two histograms of quantization bin

counts, one for LTR frames, the other for STR frames. Each

histogram is updated with each encoding of an LTR or STR

frame. Once the encoding of a particular frame (LTR or

STR) is completed, the encoder buffer is flushed, but the

histogram is carried over for encoding the next frame of the

same type. That way, the encoder can adapt to the changing

statistics of quantization bin occurrences in different types of

frames. The STR-frame histogram is reset to uniform after

each LTR frame. The decoder follows the same procedure to

track the histogram evolution at the encoder.

4. EXPERIME�TAL RESULTS

To facilitate comparison with prior work, in particular the

methods called SEG, GPCA, and PPCA in Section 2, we

used four MoCap sequences from the CMU database [13].

These four test sequences were also used in [8]. Their

description is summarized in Table 2. Each test sequence

contains a number of frames with 3D locations of m = 41

markers in C3D format. The frame rate of each sequence is

120 fps. Each coordinate of each marker is represented by

an 8-byte floating point number, so the total uncompressed

file size is given by

file size = 3 × 41 × (number of frames) × (8 bytes).

Table 2. MoCap test sequences from [13].

Sequence Type of motion Total frames Size (kbytes)

13_29 Jumping, … 4592 4413

85_12 Breakdance, … 4499 4324

86_02 Walk, squats, … 10590 10177

86_08 Walk, squats, … 9206 8847

In the field of MoCap compression, it is customary to

measure compression efficiency in terms of the recon-

struction error and the compression ratio. The compression

ratio is simply the ratio of the uncompressed file size (Table

2) and the compressed file size. The reconstruction error is

commonly measured by the so-called “distortion rate” d [8],

defined as:

()FF

FF

E
d

−

−
=

~

100 , (6)

where F is a (3m) × K matrix containing all the original

frames f [n] as columns, K is the total number of frames, F
~

is the matrix containing all reconstructed frames, E(F)

represents the temporal average values of marker

coordinates, and || ⋅ || denotes the Euclidean norm.

We compare several MoCap compression methods in

terms of d and compression ratio. Methods called SEG,

GPCA, and PPCA were described in Section 2. DPCM

(Differential Pulse Code Modulation) is a simple predictive

encoding method where each frame is predicted from the

previous one, and the prediction residual is directly

quantized and encoded without spatial transform. It is

equivalent to one of the MPEG-4 BBA compression

methods mentioned in Section 2, except that here it is

applied to raw MoCap data rather than articulated human

joints. DPCM+t_DCT_% for % ∈ {30, 60} is similar to the

other MPEG-4 BBA compression scheme from Section 2.

This method follows up temporal DPCM by temporal DCT

applied over % frames. Our method is labeled Hybrid_%,

where % ∈ {30, 60} denotes the period of LTR frames.

All methods are summarized in Table 3, which lists

their encoding delay in frames. Encoding delay is the

number of frames that the encoder has to buffer and process

before starting to encode the first frame. The encoding delay

of our method and that of DPCM is 0, because encoding of

the frame can start as soon as the frame is captured. This

makes these two methods particularly suitable for low-delay

interactive applications such as online gaming. Meanwhile,

the encoding delay of DPCM+t_DCT_% is % − 1, since the
entire group of % frames needs to be buffered before

encoding can start. SEG and PPCA have variable delay

because they apply PCA over an adaptively segmented

group of frames. The particular segmentation employed in

[8] starts with a group of 200 frames and then increases it in

steps of 10 as necessary. Hence the encoding delay of these

two schemes is no less than 200. Finally, GPCA needs to

process all frames in the sequence prior to encoding.

Table 3. Encoding delay (in frames) for various methods

Compression method Encoding delay (frames)

SEG Variable (≥ 200)
GPCA All frames in the sequence

PPCA Variable (≥ 200)
DPCM 0

DPCM+t_DCT_% %−1
Hybrid_% 0

The results are shown in Figs. 5 – 8 for the sequences

from Table 2. The results for SEG, GPCA, and PPCA are

obtained from [8], where they were reported for only one

compression ratio. Hence, we only show one point in each

graph for each of these three methods. On the other hand, by

varying the quantization step size ∆, we can obtain various
compression ratios and reconstruction qualities for the

remaining three methods including ours. Hence, DPCM,

DPCM+t_DCT_%, and Hybrid_% are represented by curves,

rather than single points.

0 200 400 600 800
0

2

4

6

8

10

12

compression ratio

d

SEG

GPCA

PPCA

DPCM + t_DCT_30

DPCM + t_DCT_60

Hybrid_30

Hybrid_60

DPCM

Fig. 5. Compression performance on MoCap sequence 13_29.

0 200 400 600 800
0

5

10

15

compression ratio

d

SEG

GPCA

PPCA

DPCM + t_DCT_30

DPCM + t_DCT_60

Hybrid_30

Hybrid_60

DPCM

Fig. 6. Compression performance on MoCap sequence 85_12.

0 100 200 300 400 500 600 700
0

2

4

6

8

10

compression ratio

d

SEG

GPCA

PPCA

DPCM + t_DCT_30

DPCM + t_DCT_60

Hybrid_30

Hybrid_60

DPCM

Fig. 7. Compression performance on MoCap sequence 86_02.

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

compression ratio

d

SEG

GPCA

PPCA

DPCM + t_DCT_30

DPCM + t_DCT_60

Hybrid_30

Hybrid_60

DPCM

Fig. 8. Compression performance on MoCap sequence 86_08.

As seen in the results, DPCM+t_DCT_% has the best

compression performance (highest compression ratio for a

given reconstruction quality) among all the tested methods.

As % increases, the compression efficiency increases, but the

encoding delay increases as well. Even with % = 30 and

sampling rate of 120 Hz, the encoding delay is equivalent to

a quarter of a second, which is likely to be too large for

interactive online gaming, considering that this is not the

only source of delay in the overall end-to-end system. When

% = 1, this scheme reduces to simple DPCM. In that case the

encoding delay is eliminated, but the compression

performance suffers. On the other hand, through the use of

data reordering and spatial DCT, our scheme is able to

achieve high compression efficiency and low delay

simultaneously. All these three methods (DPCM, Hybrid_%,

and DPCM+t_DCT_%) show considerably better recon-

struction quality than SEG, GPCA, and PPCA over the

range of compression ratios where they can be compared.

5. CO�CLUSIO�S

In this paper, we have demonstrated the potential of hybrid

encoding structure (temporal prediction + spatial transform),

which has evolved in video coding, for MoCap data

compression. A simple linear reordering makes such a

structure an efficient encoder for MoCap data. The results

indicate that the hybrid structure offers both improved

compression efficiency and lower encoding delay compared

to several state-of-the-art methods.

6. REFERE�CES

[1] M. Z. Patoli, M. Gkion, P. Newbury, and M. White, “Real

time online motion capture for entertainment applications,”

Proc. IEEE DIGITEL 2010, pp. 139-145, Apr. 2010.

[2] A. Andreadis, A. Hemery, A. Antonakis, G. Gourdoglou, P.

Mavridis, D. Christopoulos, and J. Karigiannis, “Real-time

motion capture technology on a live theatrical performance

with computer generated scenery,” Proc. IEEE PCI’10,

Tripolis, Greece, Sept. 2010.

[3] S. Subramanian, L. A. Knaut, C. Beaudoin, B. J. McFadyen,

A. G. Feldman, and M. F. Levin, “Virtual reality envi-

ronments for post-stroke arm rehabilitation,” J. %euroengi-

neering Rehabil. vol. 4, no. 20, Jun. 2007.

[4] CMU Marker Placement Guide [Online] Available:

http://mocap.cs.cmu.edu

[5] M. Preda, B. Jovanova, I. Arsov, and F. Preteux, “Optimized

MPEG-4 animation encoder for motion capture data,” Proc.

Web 3D ’07, pp. 181-190, Apr. 2007.

[6] B. Jovanova, M. Preda, and F. Preteux, “MPEG-4 Part 25: A

generic model for 3D graphics compression,” Proc. 3DTV

Conference (3DTV-CO%), pp. 101-104, May 2008.

[7] Z. Karni and C. Gotsman, “Compression of soft-body

animation sequences,” Computers & Graphics, vol. 28, no. 1,

pp. 25-34, 2004.

[8] G. Liu and L. McMillan, “Segment-based human motion

compression,” Proc. SCA’06, pp. 127-135, Sep. 2006.

[9] Q. Gu, J. Peng, and Z. Deng, “Compression of human motion

capture data using motion pattern indexing,” Computer

Graphics Forum, vol. 28, no. 1, pp. 1-12, Mar. 2009.

[10] Y. Lin and M. McCool, “Nonuniform segment-based

compression of motion capture data,” Proc. ISVC’07, pp. 56-

65, Nov. 2007.

[11] M. Tournier, X. Wu, N. Courty, E. Arnaud, and L. Reveret,

“Motion compression using principal geodesics analysis,”

Computer Graphics Forum, vol. 28, no. 2, pp. 355-364, 2009.

[12] S. Chattopadhyay, S. M. Bhandarkar, and K. Li, “Human

motion capture data compression by model-based indexing: A

power aware approach,” IEEE Trans. Visualization and

Computer Graphics, vol. 13, no. 1, pp. 5-14, Jan. 2007.

[13] The CMU Motion of Body (MoBo) Database [Online],

Available: http://mocap.cs.cmu.edu

[14] M. Servais, “Range coding MATLAB source code,”

http://www.ee.surrey.ac.uk/CVSSP/VMRG/hdtv/code.htm

[15] G. N. N. Martin, “Range encoding: An algorithm for remo-

ving redundancy from a digitised message,” Proc. Video and

Data Recording Conference, Jul. 1979.

