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ABSTRACT

Super resolution is of great use in many visual media re-
lated scenarios, such as displaying low resolution contents
on High-Definition TV(HD-TV). In these scenarios, the ef-
ficiency of the super resolution process is of vital importance.
This paper presents a fast learning based super-resolution
method. The proposed method speeds up the sparse repre-
sentation based super-resolution method by learning a dual
dictionary, and replaces the sparse recovery step by simple
matrix multiplication, which is much more computationally
efficient. Experiments demonstrate that the proposed method
can generate desirable super-resolved images with significant
computational advantages.

Index Terms— Super-resolution, sparse representation,
dual dictionary learning

1. INTRODUCTION

Image super-resolution (SR) aims to estimate a high-
resolution image (HR) from a single or a set of low-resolution
(LR) observations , which is an important technique for dis-
playing low resolution media such as video data obtained
from low resolution imaging devices such as cell phones, on
high-resolution devices such as HD-TVs. SR has a long his-
tory and is a still very active field [1, 2, 3, 4, 5]. Conven-
tional methods typically perform motion estimation followed
by frame fusion [1, 6]. Recently, some algorithms without ex-
plicit motion estimation are proposed [3, 5] to avoid the para-
metric motion assumption. For single image super-resolution,
the simplest method is interpolation-based method, e.g., bi-
linear and bicubic interpolation. Such analytical interpolation
methods do not exploit the underlying structures in natural
images, such as edges, thus usually blurring the fine details
and introducing artifacts. More advanced interpolation meth-
ods take the underlying structures in the image into consider-
ation during interpolation. For example, Li proposed an edge
directed interpolation method that the pixels coming from the
same structure are given large weights while others are given
small weights in interpolation [7]. Takeda et al developed a
kernel regression framework which takes into account the un-
derlying structural kernel for regression [8].

As an alternative, learning based method [2, 9, 10] have
shown impressive results for super-resolution. Freeman et
al. proposed to using an external database of high-low res-
olution patches to help with the prediction of the missing
high-frequency information [2]. While this method is capa-
ble of adding some high-resolution information to the esti-
mated super-resolved image, it also tends to introduce arti-
facts near structural areas, due the in lack of similar enough
patches in the generic database. Chang et al. proposed an ex-
ample based SR method by making a ‘manifold’ assumption
for the high and low resolution image patches. Specifically,
the ‘manifold’ assumption states that the manifold structures
for the low and high resolution patches are approximately
the same. Therefore, the local manifold structure estimated
from the low resolution patches can be transferred to the high-
resolution patches for high-resolution patch estimation. Re-
cently, based on compressive sensing theory, Yang et al pro-
posed a sparse representation based SR method [10], based
on the assumption that the high resolution and low resolution
patches have the same sparse representation coefficients with
respect to a high-resolution dictionary and a corresponding
low-resolution dictionary, respectively. In [11], they further
improve this method by training compact high and low reso-
lution dictionaries rather than using the raw image patches as
in [10]. This method shows impressive SR results, with more
details and less artifacts. Furthermore, SR methods exploit-
ing self-similarities [4] and exploiting both local structural
regularities as well as the image self-similarities [5] are two
recent promising directions.

We focus on sparse representation based SR method in
this paper. While it can generate state-of-the-art results, one
limitation is that it has to perform the sparse recovery pro-
cedure for each patch, which is time consuming. In this pa-
per, we aim to speed up the sparse representation based SR
method while maintaining its performance. We address this
problem with the method of learning a dual dictionary.

The rest of this paper is organized as follows. In Section 2,
we review some related works briefly. Then we introduce the
learning method for coupled dictionary together with the low
resolution dual dictionary for efficient SR in Section 3. Ex-
periments are conducted in Section 4 and we conclude this
paper in Section 5.
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2. RELATED WORKS

In this section, we first review the sparse representation based
SR method. Then we summarize the the conventional dic-
tionary learning method (also referred to as primal dictionary
learning) as well as the method proposed recently for learning
a dual dictionary.

2.1. Sparse Representation based Super Resolution

Inspired by the recent progress of compressive sensing, which
states that a sparse signal can be recovered with high probabil-
ity via a few incoherent measurements, Yang et al. proposed a
sparse representation based SR method [10, 11], by assuming
that the low resolution and high resolution patches share the
same underlying sparse representations. Treating the given
low resolution patches as measurements of the underlying
sparse representation vector, they proposed to reconstruct the
high resolution image via the sparse representation vector re-
covered from the low resolution measurements. Specifically,
given a dictionary pair {Dh, Dl} of high and low resolution,
for a low resolution patch yi from low resolution image y, we
can solve the sparse representation problem as:

ẑi = arg min
zi

‖zi‖1

s.t. ‖Dlzi − yi‖2
2 ≤ ε,

(1)

or equivalently, as

ẑi = argmin
zi

‖Dlzi − yi‖2
2 + λ‖zi‖1. (2)

With the recovered sparse representation vector z i, we can
reconstruct the high-resolution patch as:

xi = Dhzi. (3)

Collecting all the high resolution patches {xi} to their corre-
sponding positions and performing normalization, we can get
an estimation of the high resolution image x.

To better respect the same sparse representation assump-
tion, Yang et al. proposed to learn a coupled dictionary via
the following optimization process [11]:

{Dh, Dl, Z} = arg min
Dh,Dl,Z

‖Xc − DcZ‖2
F + λ̂‖Z‖1 (4)

where Xc = [ 1√
M

X�
h , 1√

N
X�

l ]� is the concatenated high

and low resolution patches. Dc = [ 1√
M

D�
h , 1√

N
D�

l ]� is
the coupled high-low resolution dictionary trained from X c.
M and N are the dimensions of the high and low resolution
patches. Z = [z1, z2, · · · ] is the matrix collecting sparse rep-
resentation vectors as columns.

It is shown that sparse representation based SR method
can generate desirable super resolved image. However, one
limitation of this method is that we have to solve the sparse

representation problem (1) or (2) for each patch at each pixel
location, thus is computationally expensive. It is desirable
to speed up this method to improve its applicability in more
realistic situations. In the following, we propose to improve
the efficiency of the sparse representation based SR via the
technique of dual dictionary learning.

2.2. Primal and Dual Dictionary Learning

Given training samples X = [x1, x2, · · · , xL] ∈ R
d×L, a

conventional dictionary learning problem trains a dictionary
D = [d1, d2, · · · , dK ] ∈ R

d×K via the following �1-norm
regularized optimization problem [12, 13, 14]:

{D̂, Ẑ} = arg min
D,Z

‖X − DZ‖2
F + λ‖Z‖1

s.t. ‖Di‖2
2 ≤ 1

(5)

where Di denotes the ith column of D. This problem is con-
vex with respect to D or Z , but not simultaneously. Typi-
cal approach for solving this problem is to minimizing over
one variable each time while keeping other variables fixed.
Such a scheme is alternated over all the variables until con-
verge [12, 13, 14]. When optimizing over Z , it is a � 1-
norm regularized problem, which is non-differentiable. Dif-
ferent algorithms have developed in the past, e.g., feature-sign
method [12] and proximal gradient based iterative shrink-
age/thresholing (IST) method [13, 14]. When optimizing
over D, the problem reduces to a quadratically constrained
quadratic minimization problem. The norm constraint on the
atoms in D is to avoid trivial solutions to this optimization
problem.

To learn the dual dictionary, one can introduce the dual
matrix to D as C = [c1, c2, · · · , cK ]� ∈ R

K×d. While each
column of D can be regarded as atoms for synthesizing, the
rows of C can be regarded as sparse filters which can be con-
volve with the input signal x to generate a code z ∈ R

K . To
learn both D and C, the following optimization problem is
proposed in [15]:

{D̂, Ĉ, Ẑ} = arg min
D,C,Z

‖X − DZ‖2
F

+ η‖Z − CX‖2
F + λ‖Z‖1

s.t.‖Di‖2
2 ≤ 1, ‖Ci‖2

2 ≤ 1,

(6)

where Ci denotes the ith row of C. As one can see, com-
pared with the primal dictionary learning problem 5, the dual
dictionary learning problem 6 has an additional constraint on
the distance between sparse coefficient matrix Z and the es-
timated one via the dual dictionary. Also, norm constraint is
also applied to the learned filters, which are the rows of C.

Eqn.(6) aims to learn a dictionary D which can sparsely
represent the training samples X well while learning a analy-
sis operator C which can generate the sparse codes with small
errors via simple linear operation.



3. EFFICIENT SUPER RESOLUTION WITH DUAL
DICTIONARY LEARNING

The dual dictionary learning method is proposed in [15] aims
to learn a linear mapping in the case of a single dictionary.
Following this scheme, in this paper, we further extend it to
learn the dual filters together with coupled dictionary training
procedure for sparse representation based SR. Treating the
dictionary D as a decoding basis or synthesis prior, we can
introduce its dual during learning, which can be regarded as
analysis prior or filers [16], and is also related to the works
on learning sparsify filters for natural images [17]. In the
following, we first propose our model for learning the dual
dictionary for low resolution patches together with coupled
high-low resolution dictionary learning. Then we propose an
efficient learning method following.

We use the dual dictionary learning scheme for achieving
fast sparse representation based super resolution. The moti-
vation is obvious: by learning an analysis operator C dual to
the dictionary D, we can approximate the sparse representa-
tion step with simple matrix multiplication, which is much
more efficient. Therefore, it is desirable to introduce the dual
dictionary learning ability to the coupled dictionary learning
method modeled as (4). However, the formulation (6) is not
proper, as it aims to learn a dual dictionary which is dual to
the coupled dictionary, therefore, the approximate sparse rep-
resentation is obtained as the product of the dual dictionary
with the coupled high-low resolution patches. But in the case
of super-resolution, the high-resolution patch is unknown and
is what we are trying to estimate. For this purpose, we pro-
pose the following optimization model for learning coupled
dictionaries with dual for efficient super resolution:

{Dh, Dl, Cl, Z} = arg min
{Dh,Dl,Cl,Z}

‖Xc − DcZ‖2
F

+ η‖Z − ClXl‖2
F + λ‖Z‖1

s.t. ‖Di‖2
2 ≤ 1, ‖Ci‖2

2 ≤ 1

(7)

where Xc = [ 1√
M

X�
h , 1√

N
X�

l ]� ∈ R
(M+N)×L and Dc =

[ 1√
M

D�
h , 1√

N
D�

l ]� ∈ R
(M+N)×K . Cl ∈ R

K×N is the dual
of Dl. In this formulation, the a dual dictionary correspond-
ing to the low-resolution patches is learned together with the
coupled high-low resolution primal dictionary.

By minimizing (7) over the concatenated training patches
Xc, we can learn a coupled dictionary Dc and Cl–the dual of
the low resolution dictionary Dl, simultaneously. Note that
the reason we only learn the dual for the low resolution dic-
tionary Dl is that we only need to perform sparse recovery
(sparse analysis) on low resolution images, i.e. for a low res-
olution patch yi,

zi = Clyi (8)

Then the corresponding high-resolution patch x i can be con-
structed via (3).

3.1. Proximal Gradient for Dictionary Learning

We aim to learn a coupled dictionary Dc, a dual dictionary
for low resolution patches Cl and the sparse representation
matrix Z by solving the optimization problem (7). Sim-
ilar to (5), problem (7) is not convex for all the variables
simultaneously, but is convex with respect to one variable
while keeping others fixed. Specifically, we address each
of the variables Z, D and C in the sequel following similar
approaches as in [15].

Z-subproblem: Sparse Coding
Fixing Dc and Cl, problem (7) reduces to:

Z = argmin
Z

‖Xc − DcZ‖2
F

+ η‖Z − ClXl‖2
F + λ‖Z‖1,

(9)

which gives the following updating formula for Z given the
previous estimation Zk [15]:

Zk+1 =Tτ/2σZ

[(
1 − η

σZ

)
Zk

+
1

σZ

(
D�

c (Xc − DcZ
k) + ηCXl

)]
,

(10)

where Tλ[X ] is the soft-thresholding operator defined
element-wise on matrix X as:

(Tλ[X ])i,j = sign(Xi,j)max
{|Xi,j | − λ, 0

}
. (11)

Dc-subproblem: Coupled Primal Dictionary Updating
Fixing Z and Cl, problem 7 reduces to:

Dc = argmin
Dc

‖Xc − DcZ‖2
F

‖Di‖2
2 ≤ 1.

(12)

The coupled dictionary can be updated by taking a gradient
step and then project onto the unit ball as:

Dk+1 = πDc

(
Dk

c +
1

σDc

(Xc − Dk
c Z)Z�

)
. (13)

Cl-subproblem: Low-res Dual Dictionary Updating
To optimize Cl, the optimization problem becomes:

Cl = arg min
Cl}

η‖Z − ClXl‖2
F

s.t. ‖Ci‖2
2 ≤ 1,

(14)

which has a similar form as (12). Therefore, C l can be up-
dated by taking a gradient descent step and then perform pro-
jecting for each row of Cl onto the unit ball. Specifically, Cl

can be updated as:

Ck+1
l = πCl

(
Ck

l +
1

σCl

(Z − Ck
l Xl)X�

l

)
. (15)



Fig. 1. High resolution dictionary Dh trained via (7) using
8000 patches randomly sampled from natural images. Only
the first 1000 out of the 1024 atoms are shown here.

π(x) = x
max{1,‖x‖} is the projection onto the unit ball. πD de-

notes the operation of applying the projection to each column
of D while πC applying projection on each row of C.

In the above updating equations, the parameters σZ , σDc

and σCl
are the step-sizes corresponding to sparse represen-

tation matrix Z , coupled dictionary Dc and the dual low reso-
lution dictionary Cl respectively. To achieve fast convergence
in dictionary learning, appropriate choices of these step-sizes
are crucial. Detailed discussions are made in [15]. Moreover,
the accelerated first order method for proximal gradient de-
scent can be used for further improving convergence [18, 19].

4. EXPERIMENTS

In this section, we conduct several experiments to evaluate
the effectiveness of the proposed method, both in terms esti-
mation quality as well as computational efficiency. Follow-
ing [11], we use 3 × 3 patches for low resolution images,
which are upsampled to 6 × 6 and convolved with the fol-
lowing 1-D derivative filters for the extraction of more salient
features from the low resolution image:

f1 = [−1, 0, 1], f2 = f�
1 ,

f3 = [1, 0,−2, 0, 1], f4 = f�
3 .

Their outputs are concatenated with the corresponding mean-
subtracted high-resolution patches for dictionary training. We
evaluate the proposed method for single image SR with mag-
nification factor of 3. For the low resolution image, there is
an overlap of 1 pixel between adjacent patches, which cor-
responds to overlap of 3 pixels for the 9 × 9 high-resolution
patches. We train the coupled dictionary with the low resolu-
tion dual via the procedure presented above using L = 8000
patches randomly sampled from natural images. A cou-
pled dictionary Dc with 1024 atoms together with the low-
resolution dual dictionary Cl are learned via (7). The learned
high resolution dictionary Dh is shown in Figure 1.

We compare the SR performance of the proposed method
with Nearest Neighbor Interpolation (NN), Bicubic Interpola-
tion (BI), the original Sparse representation based SR method
(SSR) [11] and proposed Dual dictionary based SR method

Table 1. Super resolution result comparison of estimation
quality (magnification factor: 3).

Methods NN BI SSR DSR

girl
RMSE 6.945 5.910 5.659 5.768
SSIM 0.743 0.776 0.797 0.792

flower
RMSE 4.511 3.520 3.298 3.480
SSIM 0.843 0.881 0.892 0.883

koala
RMSE 9.263 7.643 7.219 7.349
SSIM 0.770 0.815 0.838 0.831

castle
RMSE 13.442 12.474 12.057 12.304
SSIM 0.764 0.785 0.801 0.791

Table 2. Super resolution result comparison of time complex-
ity ( magnification factor: 3).

Images size SSR DSR Speedup

girl 86 × 85 12.066 1.017 11.86
flower 57 × 110 10.110 0.788 12.83
koala 480 × 321 30.652 2.449 12.52
castle 480 × 321 32.198 2.421 13.30

(DSR). The results of the four different algorithms on sev-
eral test images are shown in Figure 2. As can be seen from
Figure 2, the proposed method can generate similar results to
the original SSR method, which are visually much better than
conventional methods such as bicubic interpolation.

To quantitatively compare the speed and accuracy of the
SSR method with proposed DSR method, we summarize the
quantitative comparison results in in Table 1 and Table 2.
The Root Mean Square Error (RMSE) and Structural SIMi-
larity (SSIM) [20] results are summarized in Table 1 while
the computation time costs during reconstruction process are
presented in Table 2. As can be seen from these two tables,
the proposed method can generate SR results with desirable
quality in terms of RMSE and SSIM (Table 1) while enjoys
a significant improvement in computational efficiency com-
pared to the original sparse representation SR method (Ta-
ble 2). This indicates the potential application of the pro-
posed method in many real scenarios where realtime or near-
realtime performance is a must.

It is noteworthy to point out that while some encourage-
ment results can be obtained via such a simple linear model,
there are still some limitations. The linear model is limited
in the modeling power thus can not capture more complex
non-linearity relations for the mapping from image patches to
sparse codes, which explains the slightly worse results com-
pared with the original method. Furthermore, some artifacts
can occur near the structures in the super-resolved images,
due to the lack of the smoothing ability as in the �1-norm
regularized regression model used in the original sparse rep-
resentation based SR method.



(a) (b) (c) (d)

Fig. 2. Single image super resolution results ‘girl’, ‘flower’, ‘koala’ and ‘castle’ images with magnification factor of 3. (a) Near-
est neighbor interpolation, (b) Bicubic interpolation, (c) origina sparse representation based SR method [11] and (d) proposed
dual dictionary based sparse representation SR method.



5. CONCLUSION

An efficient sparse representation based super resolution
method is proposed in this paper. The main improvement
lies in the approximate sparse coding procedure via an ef-
ficient linear predictive model. This linear model can ap-
proximate the sparse codes of a given low-resolution image
patch by multiply it with a matrix, which is regarded as the
dual to the low resolution dictionary. A coupled dictionary
training procedure with the dual of the low resolution dictio-
nary is developed with accelerated proximal gradient descent
method. With the learned low resolution dual dictionary, we
can replace the time-consuming sparse representation proce-
dure with efficient matrix multiplication, thus speeds up the
overall super resolution process. Experiments on single im-
age super resolution tasks demonstrated the effectiveness of
the proposed method. For future work, we would like to ex-
amine more complex productive models which can capture
the non-linearities in sparse coding to further improve the su-
per resolution results while maintain the efficiency.
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