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ABSTRACT

Interactive segmentation methods have greatly simplified the
task of object cutout from an image. However, segmenting a
large number of images in a collection is still a tedious task.
In this paper, we present a content-sensitive group segmenta-
tion method that iteratively segments the images in a collec-
tion and incrementally refines the results. With our method,
a user only provides a small number of strokes to segment
and refine a few sample images. For each of the rest of im-
ages, our method finds relevant sample images and applies
the corresponding appearance models to guide the segmen-
tation. To improve the segmentation results using the user
strokes on a few images with unsatisfactory segmentation re-
sults, our method calculates the relevance map that measures
the probability that a stroke can be appropriately applied at
each pixel/region of an image, and applies it accordingly. Our
experiments show that our method can effectively segment an
image collection with a wide variety of image content and
significantly reduce user input.

Index Terms— Interactive image segmentation, Collec-
tion segmentation, Cosegmentation

1. INTRODUCTION

The recent advance in interactive image segmentation tech-
niques has greatly simplified the task of object segmenta-
tion (c.f. [1, 2, 3, 4, 5, 6]). These interactive methods, like
lazy snapping [2], grabcut [3], and geodesic image segmen-
tation [4], enable people to achieve high-quality object cutout
with only a couple of strokes. However, it is still tedious to
segment images in a large photo collection one by one.

Cosegmentation methods can automatically segment the
common object from a group of images simultaneously [7, 8,
9, 10]. However, they are based on the assumption that the
group of images have a common object and different back-
ground, which is often not valid. The most recent work of
iCoseg provides a convenient way to interactively segment a
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Fig. 1. Comparison between our collection snapping and i-
Coseg [11]. For this example, a user first segments the apples as
foreground from two sample images. Then, iCoseg builds a global
foreground model using the foreground content of both of the two
sample images. A background model is built similarly. Since the
foreground and background of the two sample images share simi-
lar color distribution, they cannot discriminate the foreground and
background of the target images. As we can see, iCoseg combines
the red apples and the background green leaf in the target image as
foreground objects. In contrast, our collection snapping succeeds as
our method discriminatively applies the color models learnt from the
relevant image (right) to the segmentation of target image.

group of photos [11]; however, they assume that the group
of the images are related to each other. The cosegmentation
methods, especially the iCoseg method, inspired our work.

We aim to develop a collection segmentation method that
iteratively segments objects of interest from a collection of
images with a wide variety of content. Like the cosegmenta-
tion methods, our method is based on the observation that im-
ages in a collection or its sub-collections share commonness.
The commonness can be used to automate or semi-automate
the segmentation. However, it could be often misleading if we
do not use them cautiously. As shown in Figure 1, we have
two samples images that a user has already segmented the
objects of interest, the apples. The left image has a green ap-
ple with a red background; while the right one has red apples
with a green background. Then, if we build a color model for
the background using the background information in the two
sample images like [11, 12], and similarly a color model for
the foreground, these two models have a quite similar color
distribution. These two models are misleading for segmenta-
tion as shown in Figure 1. We need to discriminatively apply
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Fig. 2. Collection snapping overview. Given an image collection, we first segment a small number of samples. The rest target images are
then automatically segmented guided by probabilities transferred from the color appearance models of relevant samples. When the initial
segmentation results are unsatisfactory, the user can supply one representative image with more strokes for updating its foreground and
background probabilities which are further propagated to the relevant images to refine segmentation results.

the appearance model from those relevant sample images to
guide the segmentation, instead of all the sample images.

1.1. Our work

Based on this observation, this paper presents a content-
sensitive collection segmentation method. Our method iter-
atively segments the images in a collection and incremental-
ly refines the results, as illustrated in Figure 2. Specifically,
a user first interactively segments a small number of sample
images, typically one or two. Then our method automatically
segments the rest of images by finding relevant sample images
and propagating the appearance characteristics from the rel-
evant sample images to guide the segmentation (Section 2).
Appearance is often insufficient to achieve a good segmen-
tation result. A user can supply more strokes to refine the
background and foreground. Then our method estimates a
relevance map for each of the rest of images, and uses the
stroke information accordingly to refine the segmentation re-
sults (Section 3). Our experiments show that our method can
efficiently segment an image collection with a wide variety of
image content and significantly reduce user input (Section 4).

2. COLLECTION SNAPPING

Given a collection of images, our method first allows a user
to use an interactive image segmentation technique, specifi-
cally lazy snapping [2] to cut out foreground objects from a
few sample images, which are the representative images of
the image collection. Our method then learns the appearance
models for the background and foreground from these sample
images and uses them to guide the segmentation of the rest of
images in the collection, as shown in Figure 2.

We adopt the interactive graph cut-based segmentation
framework proposed by Boykov and Jolly [1], and formulate

image segmentation as the Gibbs energy minimization prob-
lem. Specifically, the Gibbs energy for the segmentation of
an image I which can be viewed as a graph Gt = (Vt, Et) is,

E(Xt) =
∑

i∈V
E1(xi) +

∑

(i,j)∈E
E2(xi, xj) (1)

where xi ∈ Xt indicates the label of node i with xi = 1 for
foreground, and 0 for background. E1(xi) is the likelihood
energy term encoding the cost labeling node i with xi, and
E2(xi, xj) is the smoothness term penalizing the different la-
bels of adjacent nodes.

With the interactive cutout results of sample images, we
define the energy term E1 and the smoothness term E2 for
each image I, according to the appearance models learned
from the samples.

We assume that there are K sample images {IEk|k =
1, ...,K} that have been segmented interactively. The iCoseg
method estimates a global background and foreground model
from all the samples [11]. As shown in Figure 1, a glob-
al appearance model learned from all the sample images is
problematic when the background and foreground aggregated
from all the sample images have a similar color distribution.
Instead, we train a separate appearance model for each sam-
ple image IEk. Specifically, for each image IEk, we train a
Gaussian Mixture Model GMMF

IEk
for the foreground and a

GMMB
IEk

for the background.
Then, we rely more on the sample images that are simi-

lar to the target images segmented to guide the segmentation
than those less similar sample images. Specifically, the prob-
ability that a pixel of I labeled as foreground or background
is determined more by similar sample images.

We calculate the probability of a pixel vi (node i) in the
target image I as foreground w.r.t an sample image IEk by
using the maximum probability component in GMMs,



pFIEk
(vi) =

pF
IEk

F (vi)

pF
IEk

F (vi) + pB
IEk

B(vi)
(2)

where pF
IEk

F (vi) and pB
IEk

B(vi) are the initial probabilities of
vi being foreground and background computed with respect
to the foreground and background appearance models of the
sample image IEk.

Combining the probabilities computed according to all the
sample images, the overall probability is defined as,

pF(vi) ∝
∑

k

pFIEk
(vi) · S(IEk, I) (3)

where S(IEk, I) measures the similarity between the sample
image IEk and the target image I, as described in Section 2.1.
Sample images similar to the target have higher influence on
calculating this probability. We compute pB(vi) similarly.

We then define the likelihood energy term E1(xi) that en-
codes the cost labeling vi (node i) with xi as,

E1(xi = 1) =
log[pF (vi)]

log[pF(vi)] + log[pB(vi)]
,

E1(xi = 0) = 1− E1(xi = 1). (4)

We define the smoothness term E2(xi, xj) in the same
way as existing graph cut-based segmentation methods,

E2(xi, xj) =| xi − xj | exp(−βdij) (5)

where dij = ||ci − cj || is the color distance between nodes i
and j of the target image I. β is a scale parameter usually set
to [2〈dij〉]−1, where 〈·〉 is the expectation operator.

We finally employ the graph cut segmentation algorithm
[1] to obtain the segmentation results.

2.1. Similarity computation

We calculate the similarity between a sample image IEk and
a target image I using two metrics: global color distribution
based similarity and region-based similarity as follows:

S(IEk, I) = λg · Sg(IEk, I) + λl · Sl(I
F
Ek, I). (6)

where S(IEk, I) is the similarity between IEk and I,
Sg(IEk, I) is the global color distribution based similarity and
Sl(I

F
Ek, I) is the region-based similarity. λg and λl are two

weights.
We model the color distribution in an image using a col-

or histogram in HSV color space, and use the histogram
quadratic distance to compute Sg(IEk, I), the global color
distribution-based similarity between two images [13] .

We compute the region-based similarity metric Sl(I
F
Ek, I)

using the integrated region matching (IRM) [14]. In detail,
we pre-segment each of the two images using the watershed
algorithm [15]. Then, IRM builds correspondence between

regions. IRM is consistent with human perception, and is e-
specially suitable for our application in that it is designed to
highlight a pair of images with similar objects. For more de-
tails about IRM, please refer to [14].

3. ITERATIVE REFINEMENT

Our collection snapping method can usually produce good
segmentation results on most images in a collection. How-
ever, there are often some images with poor segmentation re-
sults, when the sample images are not representative enough.
Besides, segmentation is known to be difficult when the con-
trast around object boundaries is low. Thus, our method sup-
ports a user to iteratively refine segmentation results by draw-
ing strokes on the unsatisfied result to indicate either the fore-
ground or background as shown in Figure 2. Once a user
refines the segmentation of one image, our method can then
propagate his input to refine other results.

Specifically, our method builds a GMM color model in
the region around a user-input stroke. We find that directly
applying this appearance model to other images is often prob-
lematic. For instance, if a background region in an image has
similar color to the region around the user-input foreground
stroke, the background region will have a high probability to
be foreground, and thus will be mis-segmented into a fore-
ground object. Therefore, we should restrict the influence of
the newly drawn stroke to be applied to relevant regions in an
image. We devise a scheme for estimating a relevance map
for an image so that the stroke information can be applied
appropriately in a content-sensitive way.

Assume that the local foreground and background appear-
ance models extracted from strokes S are SF and SB sepa-
rately. We add to the foreground probability pF(vi) the up-
dated foreground probability pFu (vi) for a pixel vi in an image
Iu with an unsatisfactory segmentation result as follows:

pFu (vi) ∝ pFSF (vi) ·MIu(vi) (7)

where pFSF (vi) is the foreground probability directly comput-
ed using the maximum probability component of foreground
appearance models. MIu is the relevance map for the un-
satisfied image Iu evaluated with respect to the strokes S.
MIu(vi) measures the probability that strokes S can be ap-
plied appropriately to each pixel/region vi in the unsatisfied
image Iu. The background probability pB(vi) is updated sim-
ilarly.

We estimate the relevance map of a stroke to an image by
computing the similarity of a local region around each pix-
el in Iu and a stroke S. Specifically, for each pixel vi in Iu,
we compute the summed squared distances (SSD) between it-
s neighborhood and the sampled areas with the same size in
the stroke S. Denote d(vi) as the minimum distance between
them. The relevance map value on vi, i.e. MIu(vi) is then
calculated as 1

d(vi)+ε . ε is set to 1e−6 empirically for numer-
ical stability. We accelerate the computation of SSD using the



Sample

Target
Images

Initial
Probabilities

Segmentation
Results

Fig. 3. Collection snapping results of seagulls.

fast Fourier Transform. We set the local neighborhood of vi
to a window of size 11× 11 centered at vi.

With the updated foreground and background probabili-
ties, we update the Gibbs energy function for an image with
an unsatisfactory segmentation result accordingly and refine
the segmentation result.

4. EXPERIMENTS

We experimented with our algorithm on a variety of im-
age collections, which come from the CMU-Cornell iCoseg
Dataset [11], and miscellaneous sources, e.g. Flickr1 and the
dataset of HP Challenge High Impact Visual Communication
in ACM Multimedia 2010. Some representative results are
shown in Figures 3, 4, 5, and 6.

In Figure 3, the first row is the sample image that is in-
teractively segmented by a user. The second, third and fourth
rows are target images, the foreground probabilities predict-
ed from the sample image, and segmentation results, respec-
tively. Although the foreground probabilities are noisy in the
background, our collection snapping method still produces
satisfactory segmentation results. Figure 4 shows an image
collection with butterflies and sculptures as foreground ob-
jects. The samples, target images, initial probabilities, ini-
tial segmentation results and refined segmentation results are
shown in each row separately. After initial segmentation,
green leafs and some stones in the third and fourth target im-
age are mis-segmented as foreground. Good results are pro-
duced by adding more strokes. The first row in Figure 5 also
lists the sample images segmented by a user, while the sec-
ond row and third row are the target images and segmentation
results separately. Although the background patterns are clut-
tered with grasses or leaves in most target images, the collec-
tion snapping results are of good quality. Note that, we pro-

1http://www.flickr.com

Seagull Landscape Flower Sports
Ours 0.4 1.0 1.8 2.0

Li’s [2] 2.0 3.0 5.3 6.75

Table 1. Statistical data of usability study. The average num-
bers of strokes applied to per image in each photo collection
used by our collection snapping and lazy snapping are shown.

duce the final segmentation results for the collections shown
in Figures 3 and 5 with only initial snapping, and no further
user strokes are needed.

The collection in Figure 6 consists of sports photos. The
photos in this dataset have very complex and diverse back-
ground and foreground appearance. For example, the color
background in images with baseball players is green, while
the color of foreground in images of man football players is
green. The first row in Figure 6 lists the sample images that
are interactively segmented by a user, and the following rows
list the whole process of segmenting the rest images by auto-
matically propagating the appearance characteristics from the
relevant sample images. The next every four rows are target
images, initial foreground probabilities, initial segmentation
results, and the refined segmentation results individually. Al-
though the initial segmentation results for many images are
good, there are still some results that need to be improved.
The ambiguous and low contrast object boundaries also cause
unsatisfactory segmentation. For example, the black hats in
the third and fourth images of baseball players, and the shoes
in the eighth image of a woman player are missing in the ini-
tial segmentation results. We add user strokes to refine these
results.

Our method propagates the user strokes based on rele-
vance maps. The relevance maps are used to guarantee that
the stroke in an image will be appropriately applied to another
one. For example, the initial segmentation result of the first
and second images of player photos in Figure 6 both have
some green land mis-segmented into foreground. The user
strokes in the second image have positive influence on the
first image via the relevance map. This greatly reduces the
overall strokes needed in the refinement process.

4.1. Usability Study

We compare the performance of our collection snapping
method with our implementation of lazy snapping [2], a rep-
resentative single-image interactive segmentation method.

In our study, we did not take the length of strokes as a
measure, because it does not cost much more effort when a
user draws a longer stroke than a short one. We count the
average number of the strokes user labeled on an image. We
asked three subjects who are Photoshop experts, thus familiar
with the stroke interface, and are familiar with the Lazy snap-
ping cutout tool to segment the same collection. We report the
average number of strokes for each image using our method
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Fig. 4. Collection snapping results of landscape.
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Fig. 5. Collection snapping results of flowers.

and the lazy snapping method in Table 1. We can see that our
method can significantly reduce user interaction.

5. CONCLUSIONS

We have presented a collection snapping method that itera-
tively segments an image collection with a wide variety of
image content. Our method starts from a small number of
sample images that are segmented by a user. Then, we use
the segmentation results from appropriate sample images to
guide the segmentation of the rest of the images in the col-
lection. In order to further improve the segmentation results
using user-provided strokes, our method calculates the rel-
evance map that measures the probability that a stroke can
be appropriately applied at each pixel/region, and applies the
stroke accordingly. Our experiments show that our method
can efficiently segment an image collection with a variety of
image content and significantly reduce user efforts.

The initial segmentation results are sensitive to similari-
ties between the target images and samples. We compute the
image similarities using a region matching method which on-
ly employs low level information. We intend to incorporate
more sophisticated high level features based method into our
framework.
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