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ABSTRACT

The problem investigated in this paper is the quick identifi-
cation of free-form 2D objects using a coefficient based in-
dexing technique. We demonstrate that combining implicit
polynomial shape descriptors with calibration techniques has
the potential to quickly identify images of similar shapes. As
a pilot experiment, our approach is evaluated against a small
database consisting of 15 images, with three different images
from five categories. The index system achieves an overall
Top-3 matching accuracy of 88.9% comparing to 91.1% of
the traditional brutal force method on the same database with
a computational cutoff of 67.7%.

1. INTRODUCTION

With the rapid proliferation of the internet and the worldwide-
web, the amount of digital image data accessible to users
has grown enormously. Image databases are becoming larger
and more widespread, and there is a growing need for effec-
tive and efficient image retrieval systems [1]. For instance,
Google’s Image Search contains billions of images available
for viewing [2]. Google indexes these images based on text
appearing around images in publicly available web pages. The
associated text enables text search for images. While this is
useful, it is limited. Often the text inappropriately describes
the image and similar images have radically different text.
There is increasing demand for automated indexing of images
such that given an image, the search engine would retrieve
similar images based on the image itself.

Many proposed techniques to associate images with free-
form shapes based on their similarity measurements (e.g., [3]).
A detailed survey of shape correspondence techniques can be
found in [4]. Among the popular methods, there are shape
moments, Fourier descriptors, Hausdorff distance and alge-
braic invariants [3], and shock-graph based shape matching [6].
In general, the basic idea underlying these methods is ei-
ther retrieving global shape descriptor like invariants statis-
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tics, shape measures, deformable models, on the one hand,
measuring local edge similarities, on the other [10]. However,
current models have various limitations or drawbacks and po-
tential of shape based image indexing in real world systems
has not been fully appreciated.

• Global shape descriptor like implicit polynomial fitting [7]
is robust in presence of noise and perturbations. But the
result coefficients can not be used directly for recogni-
tion as they are subject to rotation, translation and affine
transformation of the shape. The calculation of Euclid-
ian and affine invariant descriptors is expensive yet the
accuracy rate is not sufficient for practical systems.

• Local edge similarity method like shock graph descrip-
tors [6] does a good job in classifying images into se-
mantically meaningful categories based on their under-
lying structure. However, they are not designed to iden-
tify the difference between images of its own group.
For example, brush rabbit and arctic hare are indistin-
guishable because the both share the same limb and
body structure.

The aim of this writing is to demonstrate a novel approach
to compute Euclidean and affine invariant polynomial coeffi-
cients via a conjunction of calibration techniques and a robust
implicit polynomial fitting, and illustrate their use in recog-
nizing objects through experiments.

2. SELF CALIBRATE IMPLICIT POLYNOMIAL
FITTING

In model based vision, implicit polynomials have been proven
to be a powerful object recognition technique in representing
non-star complex shapes [7]. The strengths of this represen-
tation includes their interpolation properly for handling miss-
ing data and smoothing property against noise and pertuba-
tions. Thus, implicit polynomials provide a computational in-
expensive solution to recognize simple two-dimensional ob-
jects. However, when objects become complex, low degree
implicit polynomials fail to fit due to insufficient degree of
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freedom. On the other hand, high degree implicit polyno-
mials, though capable of describing complex shapes, result in
unstable results because of their high sensitivity to noise, rota-
tion, translation and other affine transformations. Most meth-
ods of computing algebraic invariants are thus ad-hoc and at-
tentions have been restricted to arbitrary classes of invariants,
or brutal force searches [5]. Note that algebraic invariants of
a polynomial curve or surface is a function of polynomial co-
efficients that is either Euclidean or affine invariant.

Comparing to symbolic methods that generates algebraic
invariants of high degree implicit polynomials of pages long
[5], our method has a simple representation and can be ex-
tended up to arbitrary high degree.

2.0.1. Implicit Polynomial Fitting

An implicit polynomial of degree N is a polynomial function
f(x, y) = 0 where f(x, y) = mT a , m is the (N×1) column
vector of monomials xiyj , i + j <= N , and a is the (N × 1)
polynomial coefficients. “Implicit polynomial fitting” is the
task to find t implicit polynomial coefficients that minimize
the distance of the polynomial to data points of interest. The
goal is to approximate η0, the set of data points (x, y) repre-
senting the boundary η0 of a two dimension object D of in-
terest, by the zero level set of a implicit polynomial function
f . This is to minimize the following error function:

E =
∑

(x,y)∈η0

f(x, y)2. (1)

here, (x, y) ∈ η0, η0 is the boundary of D, which is equivalent
to the following opimization problem:

a∗ = argmina{a′m′
η0

mη0a} (2)

Blane shows 3L implicit polynomial fitting algorithm is
significantly faster and more repeatable than existing meth-
ods in [7]. To fit an object of interest, the 3L approach first
computes two ribbon belts (level sets) η−c, η+c, (red and blue
belts in Figure 1) of the object boundary (green belt), using
D-Euclidian distance transform function φ(x, y). Figure 1
depicts three level sets and the surface of the corresponding
D-Euclidian distance transform function of a simple object.

The least-squares solution for a is obtained by,

a = M−1
3L b (3)

here M3L = [Mr−c Mr0 Mrc ]′ , b = [−c 0 + c], where
(Mr−c Mr0 Mrc) are the (N−c∗|C|), (N0∗|C|), (N+c∗|C|)
matrices of monomials for the corresponding sets of points in
the ribbon belts computed using ϕ(x, y), and −c, 0, and +c
are the (N−c ∗ 1), (N0 ∗ 1) and (N+c ∗ 1) column vectors
having values−c, 0, and +c.

Although 3L fitting is Euclidean invariant, the raw coef-
ficients themselves can not be directly used for recognition.
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Fig. 1. Zero level set of the implicitit polynomial function and
its associated polynomial surface

The reason is coefficients a of 3L fitting are subject to change
under rotations and translations. For example, 2X2 +Y 2 = 1
and X2 + 2Y 2 = 1 represent the same oval object but they
have different coefficients [0, 0, 2, 0, 1] and [0, 0, 1, 0, 2] with
respect to monomials [x, y, x2, xy, y2]. Because coefficients
are global descriptors, even if two shapes looks the same lo-
cally, their fitted coefficients could differ glocally under rota-
tion or translation. Besides these limitations, 3L has an inher-
ent inconsistency problem under geometric contraction and
expansion. Refer to Equation 3, levels sets η−c, η+c are com-
puted using D-Euclidian distance transform function from the
two dimension object boundary η0 point by point. Level sets
generated on scaled objects are not preserved and thus poly-
nomial coefficients a calculate before and after affine trans-
formation are unstable.

2.1. Self calibrate 3L fitting

To address the challanges in traditional 3L fitting, we pro-
pose a novel method to produce Euclidean and affine invari-
ant polynomial coefficients. Intuitively, data points represent-
ing the same object have invariant distribution in their feature
space regardless of translation and rotation. To ensure ro-
bust mathematical representation of implicit polynomials, it
is good idea to convert the data of interest to a standard po-
sition and coordination with respect to its distribution. This
problem is naturally translated into a question: what is the
best way to “re-express” the original data set X invariant to
translation and rotation. To normalize the calibration, we as-
sume directions with largest variance in measurement vector
space contain the dynamics of interest. For instance, a toy
example from [8] demonstrate that the dynamics of a spring
is along its extension, which is parallel to the X axis, refer to
Figure 2.

Fig. 2. Priciple Component Analysis Toy Example
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This assumption suggests that the basis for which we are
searching are the directions containing most variance, in other
words, directions that minimize the squared reconstruction er-
ror. Our problem is thus naturally bridged to Principle Com-
ponent Analysis (PCA), which provides a practical solution
consisting of orthogonal basis vectors [8]. Assume the data
is a set of d-dimension vectors, where nth vector is xn =
xn

1 , ..., xn
d . These vectors can be represented in terms of d

orthogonal basis vectors xn =
∑d

i=1 zn
i ui, u

′
iuj = 0. PCA

searches for u1, ..., uM that minimizes EM =
∑N

n=1 ||xn −
x̂n||2, where x̂n = x̄ +

∑d
i=1 zn

i ui and the mean equals
x̄ = 1/N

∑N
n=1 xn. Instead of mapping the data into a low

dimension, we project the data using all orthogonal basis vec-
tors to avoid information loss when data dimension is low. In
case data dimension is huge, we replace PCA with SVD and
select eigenvectors representing 95% of total data variances.
The result coefficients are now insensitive to both rotation and
translation. Note that the results are also affine invariant due
to our normalization step 5.

Algorithm 1 Self Calibrate 3L fitting
Input: p (Images of 2D free-form objects)
Output: Affine and Euclidean invariant polynomial
coefficients.

1: Uniformly sample 1/5 of the original data X , collect
Xs.

2: Perform PCA or SVD on the sampled data Xs, compute
eigenvalue λ1, ..., λd and corresponding eigenvectors
U = u1, ..., ud.

3: Project original data to the orthogonal space Y = XU
4: Bring the centroid of the projected data to point (0,0),

the center of the new coordinate system.
5: Normalize the images with respect to x axis, preserve

their original ratios.
6: Fit 3L implicit polynomial to the transformed data

points, compute the coefficients a = M−1
3L b.

2.2. Index

Using polynomial coefficients obtained in the previous sec-
tion, we propose a heuristic indexing approach. We now briefly
describe our algorithm. The idea underlying coefficient-based
matching is to associate images based on boundary similarity
represented by their polynomial coefficients global descrip-
tors. However, computing shape distance function over the
entire database can be formidably expensive. To avoid unnec-
essary computation, we introduce a heuristic method to calcu-
late distance function EQ

D only when multiple candidates re-
mained after pruning the query. The pruning step is based on
congruent signs of polynomial coefficients in a query shape
against previous recored coefficients of a shape database.

Next, we introduce the shape distance function. Given a
query image Q containing ZQ points and an image database
Dimage containing Dk, k ∈ 1...n images with each Zi points
in each image. The fitting models for these are

(x, y) : fq =
∑

0<i,j;i+j≤de

aqx
iyj = 0 (4)

(x, y) : fk =
∑

0<i,j;i+j≤de

aDk
xiyj = 0. (5)

Here de refers to the degree used to fit polynomials and Nq,k

represents data dimension of the union of the query image Q
and a image Dk in the database. Following reference [9] , we
define distance between Q and Dk as:

EQ
Dk

= ||fq − fk||ZQ∪Zk

=
1

Nq,k

∑

(x,y)∈(ZQ∪Zk)

[
∑

0<i,j;i+j≤de

(aq − aDk
)xiyj ]2 (6)

Algorithm 2 Coefficient-based indexing
Input: A query image Q and an image database Dimage

with implicit polynomial coefficients
Output: Top-K similar images P1, ..., PK in the database

1: Initalize similarity threshold K and K∗, K < K∗,
compute total number of coeffients
N = [(de + 1)(de + 2)]/2, Given de is the degree of
polynomials.

2: Fit implicit polynomials to the query image Q using
Algorithm 1, obtain polynomial coefficients
Aq = a1, ..., aN .

3: Binary codes Aq = a1, ..., aN to a sequence of 0s and 1s
Sq = s1, ..., sN based on their signs.

4: for Each binary coded coeffients Sj , j ∈ [1...n] in the
database do

5: Tj =
∑

XOR(Sq, Sj)
6: end for
7: Push Top-K∗ candidates in terms of Tj into a stack

Stackcandidates.
8: for Each candidate d, d ∈ Dimage in Stackcandidate do
9: Calculate the distance (Equation 6).

10: end for
11: Return K images P1, ..., PK with smallest abs(EQ

D)
value.

3. EXPERIMENTS AND RESULTS

We demonstrate our shape matching algorithm with exam-
ples. To evaluate the performance, we used the Brown Shape
Indexing of Image Databases (SIID) to test our algorithm [6].
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We choose a subset consisting of three images in each of
the following five categories: fish, plane, triangle, hand and
glasses. We collect five candidate images for each query when
the threshold K∗ = 5. Note that the pruning step should al-
ways be considered in conjunction with distance based match-
ing in the second step. Following Algorithm 2 in Section 2,
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Fig. 3. Coefficient-based matching procedures: 1. Prune the
candidates 2. Compute similarities. When K∗ = 3, apply
pruning step in conjunction with distance based matching, the
first choice is always correct and the second, third choices are
13/15 and 12/15 times correct, respectively.

we fit five degree implicit polynomials to PCA-calibrated im-
ages. Only the Top-K∗ candidates of the pruning step are
considered for distance matching. Refer to Figure 3, the fig-
ures on the first line of each cell refer to the number of congru-
ent signs in polynomial coefficients. The figures in the paren-
theses refer to the distance between two different shapes. In
the pruning step, we select best matching candidates and high-
light their figures in bold italic format. Distance (red figures)
is only computed for these candidates.

The threshold K∗ controls the tradeoff between accuracy
and computational cost. Larger threshold K∗ includes more
candidates for distance matching and better accuracy rate while
smaller threshold K∗ has less computational cost. For exam-
ple, when K∗ = 15, distance is calculated for every pair of
images and the best averaged Top-3 matching rate is 91.1%.
This result corresponse to applying the brutal force approach
mentioned in [9]. When K∗ = 3, the averaged Top-3 match-
ing rate is 88.9% (Accuracy is only sligtly degraded. First,
second and third choices are 15/15, 13/15 and 12/15 times
correct, respectively) with a computational cutoff 67.7% of
the above brutal force method.

4. CONCLUSION

This paper suggests an alternative approach to index 2D shape
in large shape databases. The algorithm combines 3L fit-
ting with PCA calibration. The result coefficients are both
Euclidean and affine invariant, providing a simple shape rep-
resentation for recognition purpose. In addition, the algorithm
can be easily extended to higher dimension using a voting
scheme. However, even though the pilot experiment con-
ducted on a small image database indicates a high matching
accuracy with reduced computational cost, more thorough ex-
periements are needed to be run, including a large scale test of
different kinds of affine transformations over various objects
and performance evaluation in the presence of occlusion.
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