
ADAPTIVE MULTILAYER REVERSIBLE DATA HIDING USING THE

MEAN-TO-PIXEL DIFFERENCE MODIFICATION

Han-Min Tsai, Long-Wen Chang

Department of Computer Science, National Tsing-Hua University, HsinChu, Taiwan

ABSTRACT

In this paper, we propose a new reversible image data
hiding algorithm with high data embedding rate and low
stego-image distortion. The proposed method is called
as a multilayer algorithm. It can embed data in the
image repeatedly in a non-overlapping block fashion. In
the first layer, the image is divided into 2x2 blocks in a
raster-scan order and at most 3 bits can be embedded
in each block. In the second layer, the resulting stego-
image from the first layer is also divided into 2x2 blocks
in a raster-scan order from the second pixel to alleviate
the stego-image distortion, and so on. Each layer has
its threshold to control its data embedding rate. The
threshold is adaptively adjusted according to the ratio
of the size of the total data bitstream to the size of the
already embedded bitstream. Our experimental results
show the proposed method achieves good performance of
high data embedding rate and high stego-image quality.

1. INTRODUCTION

Digital image data hiding is the technique that embeds
the watermark or secret data into an original image to
form a stego-image. The embedded data or watermark
can be visible or invisible on a stego-image. If it is in-
visible, the embedded watermark on stego-image should
not be easily perceived. Although the stego-image has
only slight difference from the original image, in some
specific images like medial, military, and legislation im-
ages, even the little distortion on these images can not
be accepted. In these applications, the data hiding algo-
rithm should be able to restore the original image from
the stego-image. This is the so-called reversible, lossless,
or distortion-free data hiding technique.

In [1], Kalker and Willems prove theoretical capac-
ity limits of reversible data hiding schemes which based
on lossless compression, and give a practical code con-
struction. In [2], RS vectors are losslessly compressed
to vacate space for data embedding. In [3], the authors
create the space for data embedding by shifting the his-
togram between the peak point and the zero point. Ni
et al. [4] further improved their method[3] by using more
peak points for higher embedding capacity. However, the

embedding capacity in [3, 4] is limited by the number of
peak points. Celik et al. [5] proposed a lossless data em-
bedding method, which losslessly compresses the little
perceptible portions of the original image to produce the
extra space for data embedding. In [6], Tian proposed a
reversible data hiding using difference expansion, which
embeds the data bits into the least significant bit(LSB)
of the expanded difference between two adjacent pixels.
Kamstra [7] uses the Sweldens’ lifting scheme and pre-
dicts the LSB-plane using the seven most significant bit-
planes to compress the LSB-plane to create space for
data embedding.

The methods in [2, 5, 6, 7] losslessly compress the
original image features as the side information. For ex-
ample, the bitstream of lossless compression of the RS-
vectors in [2], the bitstream of lossless compression of
the least significant portions of an image in [5, 7], and
the bitstream of lossless compression of the location map
in [6] are side informations. The side information and
watermark are together embedded in an image. Thus,
if the side information is smaller, there would be more
space for data embedding.

In this paper, we losslessly compress the location map
of the possible underflow or overflow(PUO) pixels as the
side information. In general, the PUO pixels are few in
most images such that the side information is small and
large data is embedded in the image.

2. REVERSIBLE DATA EMBEDDING AND

EXTRACTION

The proposed algorithm(encoder/decoder) embeds and
extracts data by modifying the differences between the
pixel values of a 2x2 block and the mean value of this
block pixels. As indicated in Fig.1, three pixels p1, p2

and p3 are modified to embed data while the pixel p4 is
modified such that the mean value of these four pixels is
unchanged after the modification.

The mean value m and the differences between m and
p1, p2, and p3 are given by

{
m = � 1

4

∑
4

i=1
pi�.

di = m− pi, where i = 1, 2, 3.
(1)

21021-4244-1017-7/07/$25.00 ©2007 IEEE ICME 2007

Fig. 1. A 2x2 block.

The notaion �.� denotes the mathematical floor opera-
tion, for instance, �2.7� = 2, �−1.7� = −2. The differ-
ences d1, d2, and d3 in the equation (1) are then modified
by

d′i =

{
2di + bj if −T < di < T ;
di + sign(di) · T else,

(2)

where bj is the jth bit of the data payload, T is the given
threshold, sign(di) = 1 if di ≥ 0 and sign(di) = −1 if
di < 0. Note that di, −T < di < T , is the difference that
can be embedded data. With the new differences d′i, p1,
p2, and p3 are then modified by p′i = m− d′i, where i =
1, 2, 3.

To preserve the same mean value both at the encoder
and the decoder, the three differences between p′i and pi

are summed up and then p4 is modified by,

{
δ =

∑
3

i=1
(p′i − pi) .

p′
4

= p4 − δ.
(3)

In the decoder, we first calculate the mean value m′

using (1). Based on (3), we can easily verify that m′ =
m. Therefore, d′i can be restored by m′−p′i = m−p′i = d′i,
where i = 1, 2, 3. With d′i, data bit bj can be extracted
by

bj = |d′i| mod 2 if −2T < d′i < 2T , (4)

where i = 1, 2, 3 and |.| represents the absolute value.
Then, di can be restored by

di =

{
�d′i/2� if −2T < d′i < 2T
d′i − sign(d′i) · T else,

(5)

where i = 1, 2, 3. With the original di, the original pixel
values p1, p2, and p3 are restored by pi = m− di, With
the original pi, δ is calculated by δ =

∑
3

i=1
(p′i − pi), and

then p4 is restored by p4 = p′
4

+ δ. At present, we have
correctly extracted data bits and restored the original
pixel values.

In most cases, we just modify pixel values to embed
data. However, when pixel values are close to 0 or 255,
modifying these pixels may cause underflow or overflow,
and we call these possible underflow or overflow pixels
as the PUO pixels and the the remaining pixels as the
non-PUO pixels. To avoid the problem that pixel values
are overflow or underflow after pixels modification, we

must pre-process the image before the proposed method
launches. To locate the PUO and non-PUO pixels, we
generate a binary image where the PUO pixels denoted
as ‘1’ and the non-PUO pixels denoted as ‘0’. The binary
image is then compressed by the losslessly compression
algorithm JBIG as the side information. Besides, those
PUO pixel values must be shifted by

p′ =

{
p + 3T if p < 3T ;
p− 3T if p > 255− 3T ,

(6)

where p the PUO pixel value of the original image.

3. FORMAT OF DATA PAYLOAD AND

SYNCHRONIZATION INFORMATION

The proposed method is a multilayer embedding algo-
rithm. The format of data payload P and synchroniza-
tion information(SI) of each layer should be the same
both at the encoder and decoder. The side information
s must be embedded in the stego-image to restore the
original image. Thus, the data payload P consists of s
and watermark w of each layer, as shown in Fig. 2. For
the decoder to distinguish between s and w, P contains
a 18-bit ||s|| denoting the size of s, a ||s||-bit s denoting
the side information bitstream, and a ||w||-bit w denot-
ing the watermark bitstream, where ||.|| represents the
size of the bitstream,

Fig. 2. The format of data payload P .

The format of SI is shown in Fig. 3. It contains a
3-bit n denoting the nth layer, a 4-bit T denoting the
threshold of each layer, a 1-bit F signaling the decoder
whether decoding is necessary after extracting the last
embedded bit. and a m-bit Ps denoting the size of the
data payload P, where m = �log

2
(N

2
× N

2
× 3)� assuming

the dimension of the image is N ×N .

Fig. 3. The format of synchronization information SI.

In our method, the size of data embedded in each
layer is not known till the encoder finishes in each layer.
That is to say, Ps is not known till the end of this layer
embedding. Therefore, the encoder must reserves enough
2x2 blocks for SI before embedding P in each layer. The
encoder uses the fixed threshold Tf , (1), and (2) to count

2103

the number of bits that SI needs from the most left-top
2x2 block of the image in a raster-scan order, but without
embedding data. The remaining blocks of the image will
be used to embed P .

Both the encoder and decoder use the fixed threshold
Tf to embed and extract SI. With SI, the decoder can
extract P followed by separating s from w. The side
information s is then decompressed as the location map
to indicate which pixels are shifted before embedding
data. Then, the decoder can shift back those shifted
pixel values to restore the original pixel values.

4. ADAPTIVE MULTILAYER EMBEDDING

The encoder embeds data in the non-overlapped 2x2
blocks of the original image in a raster-scan order as
shown in Fig.4(a). After embedding data in the most
right-bottom block of the image, the encoder finishes the
first layer embedding and forms the stego-image.

If there exists data payload not embedded, the en-
coder launches the second layer embedding. It embeds
the rest of the data in the stego-image resulted from the
first layer. The block embedding order in the second
layer is right shifted horizontally with a pixel as shown
in Fig. 4(b). With the right shifted operation, it can al-
leviate the distortion introduced from the first layer. The
block embedding order in the third layer is the same as
that in the first layer and so on.

(a) The first layer. (b) The second layer.

Fig. 4. The block embedding order for the first and
second layer.

In addition, the threshold of each layer is adaptively
adjusted according to the ratio of the size of the total
data bitstream to the size of the already embedded bit-
stream. For example, let W be the watermark bitstream
that user wants to embed, S and E be the total side in-
formation and the already embedded bitstream till this
layer, respectively. The threshold T in current layer is
adjusted by

T ′ = T + �(||W ||+ ||S||)/||E||�, (7)

where T ′ is the threshold for the next layer. We summa-
rize the embedding steps for each layer as follows.

1. Reserve enough 2x2 blocks for SI in a raster scan
order from the left-top of the image.

2. Pre-process the image to avoid overflow/underflow
using (6). The encoder uses both Tf and T of
each layer to shift the PUO pixels in the reserved
blocks for SI and in the remaining blocks for P,
respectively.

3. Embed P in the remaining blocks. Let e be the
embedded bitstream and s be the side information
in this layer. When ||e|| < ||s|| + 18, the encoder
must quit embedding because s can not be fully
embedded in this layer.

4. Embed SI in the reserved blocks. After embedding
P in a single layer, the size of P is known such that
the synchronization information SI can be embed-
ded in the reserved blocks.

5. Adaptively adjust the threshold using (7) and go to
step 1 if there exists data not embedded.

Note that, in the reserved blocks for SI, the encoder
must use Tf to embed data and to shift the PUO pix-
els, and the decoder must use Tf to extract data and to
shift back those originally PUO pixels. In the remaining
blocks for P, both the encoder and decoder use T to do
pixels shifting, data embedding, and data extraction.

5. EXPERIMENTAL RESULTS

The watermark bitstreams were pseudo randomly gener-
ated with different sizes, the threshold Tf was set as 5,
and the threshold T was set as 3 in the first layer. The
proposed method was applied to the 512x512 8-bit gray
scale images, called Lena, F16, and Mandrill. Table 1
lists the Peak Signal to Noise Ratio(PSNR) under the
various watermark sizes measured in bit per pixel(bpp).
When the data embedding rate is 1 bpp, the stego-images
of Lena and F16 still have high PSNR above 31 dB. Ad-
ditionally, the proposed scheme can automatically deter-
mine the maximum embedding rates for different images.
The maximum data embedding rates for Lena, F16, and
Mandrill are 1.40, 1.70, and 0.55 bpp, respectively.

Fig.5 shows three stego-images with PSNRs under
0.2bpp, 0.4bpp, and 0.6bpp. Their image quality are
quite good. Fig.6 compares the proposed method with
the high capacity reversible watermarking schemes [5, 6,
7] in PSNR(dB) vs. Capacity(bpp). When the embed-
ding rate is above 0.5 bpp, the proposed method outper-
forms all of them more than 3 dB. The proposed method
is only slightly worse than [7] below 0.35 bpp. However,
the difference is so small that it can be omitted. In gen-
eral, the PUO pixels are few in most images. Therefore,
the PUO and non-PUO pixels are so skewly distributed
that the side information can be small. Further, the per-
formance can be improved by a better lossless compres-

2104

sion algorithm like JBIG2. For security, the watermark
can be encrypted before embedding.

Capacity(bpp) Lena F16 Mandrill
0.05 52.53 51.24 42.01
0.10 48.73 49.10 40.22
0.20 44.83 46.94 34.69
0.40 41.37 42.19 27.65
0.60 37.67 38.66 -
0.80 35.41 36.04 -
1.00 31.82 33.67 -

Table 1. PSNRs for various data embedding rates.

44.83 / 0.2bpp 41.37dB / 0.4bpp 37.67dB / 0.6bpp

Fig. 5. The stego-images for various PSNRs and Capac-
ity.

Fig. 6. Capacity(bpp) versus PSNR(dB).

When the size of the watermark was 262144 bits, we
applied the proposed method to the Lena image. In Ta-
ble 2, e is the embedded bitstream in each layer, it con-
tains side information s and the embedded watermark
bitstream w for each layer. It shows that the larger
threshold T is, the more data can be embedded in the im-
age. However, it also generates more PUO pixels, which
increases the overhead of side information.

Layer 1 2 3
e(bits) 119113 136052 25633
s(bits) 1434 2090 15130
T 3 5 6

Table 2. The embedded bistream e, the side information
s, and the threshold T in each layer.

6. CONCLUSION

In this paper, the proposed method utilizes the correla-
tion between the mean of the 2x2 block and the block pix-
els to embed more data. If the data is large, multilayer
embedding and adaptively adjusting threshold scheme
are used to alleviate the stego-image distortion. In the
experimental results, we show that the stego-image has
little artifact and the proposed method achieves better
performance compared with existing high capacity re-
versible watermarking schemes [5, 6, 7].

7. REFERENCES

[1] T. Kalker and F. M. J. Willems, “Capacity bounds and
constructions for reversible data-hiding,” 2002, vol. 1, pp.
71–76 vol.1.

[2] J. Fridrich, M. Goljan, and R. Du, “Lossless data embed-
dingvnew paradigm in digital watermarking,” EURASIP

Journal on Applied Signal Processing, vol. 2002, no. 2, pp.
185–196, 2002.

[3] Zhicheng Ni, Y. Q. Shi, N. Ansari, and Wei Su, “Re-
versible data hiding,” in Circuits and Systems, 2003.IS-

CAS ’03.Proceedings of the 2003 International Sympo-

sium on, 2003, vol. 2, pp. II–912; II–915 vol.2.

[4] Zhicheng Ni, Yun-Qing Shi, N. Ansari, and Wei Su, “Re-
versible data hiding,” Circuits and Systems for Video

Technology, IEEE Transactions on, vol. 16, no. 3, pp.
354–362, 2006.

[5] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber,
“Lossless generalized-lsb data embedding,” Image Pro-

cessing, IEEE Transactions on, vol. 14, no. 2, pp. 253–
266, 2005.

[6] J. Tian, “Reversible data embedding using a difference
expansion,” Circuits and Systems for Video Technology,

IEEE Transactions on, vol. 13, no. 8, pp. 890–896, 2003.

[7] L. Kamstra and H. J. Heijmans, “Reversible data embed-
ding into images using wavelet techniques and sorting,”
IEEE Transactions on Image Processing, vol. 14, no. 12,
pp. 2082–2090, Dec 2005.

2105

