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ABSTRACT

We present an automated system for multicamera motion capture
and audio-visual analysis of dance figures. The multiview video
of a dancing actor is acquired using 8 synchronized cameras. The
motion capture technique is based on 3D tracking of the markers
attached to the person’s body in the scene, using stereo color infor-
mation without need for an explicit 3D model. The resulting set of
3D points is then used to extract the body motion features as 3D dis-
placement vectors whereas MFC coefficients serve as the audio fea-
tures. In the first stage of multimodal analysis, we perform Hidden
Markov Model (HMM) based unsupervised temporal segmentation
of the audio and body motion features, separately, to determine the
recurrent elementary audio and body motion patterns. Then in the
second stage, we investigate the correlation of body motion patterns
with audio patterns, that can be used for estimation and synthesis of
realistic audio-driven body animation.

1. INTRODUCTION

Motion has played an important role in computer vision research
since the very beginning and is becoming more and more central as
multiple view environments are being introduced into several areas
of this research field. One of these areas is devoted to the study of
humans, e.g., face and facial expression recognition, gesture recog-
nition, whole-body tracking and gait recognition, or in the more gen-
eral sense, complete analysis of human activities. Nevertheless, the
study of human motion is of interest to a number of disciplines in-
cluding psychology, kinesiology, choreography, computer graphics
and human-computer interaction as well.

Motion capture systems have continuously been evolving and
there exist already various techniques and approaches in the litera-
ture, that can be distinguished mainly based on whether they make
use of markers (active or passive), or fully rely on image features,
and the type of motion analysis they employ (model-based or not).
Aggarwal and Cai review the research progress on human motion
analysis in [1] in detail and Gavrila provides an in-depth survey in
[2].

Marker-based systems rely on the contrast of the markers with
the background to capture their motion. One can use active capture
systems, such as LED markers that pulse in synchronization with the
cameras’ digital shutters, or passive systems, such as using strongly
retro-reflective markers along with an illumination source co-located
with each camera. These methods however can not acquire and cap-
ture the shape and texture properties of the subject, which could
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also give supplementary information about location of feature points.
Hence, [3] proposes a motion capture algorithm based on the use of
simple color-markers, aiming at a visually guided and more control-
lable 3D animation system. On the other hand, in [4], a vision-based
full-body estimation and interaction system that uses a marker-less
method is presented. It first extracts 2D blob features, and then es-
timates the 3D full-body parameters. Ricquebourg and Bouthemy
in [5] develop a method to track the apparent contours of a moving
articulated structure, avoiding the use of 3D models.

In this work we present an automated system for multicamera
motion capture and audio-visual analysis of dance figures. The pro-
posed motion capture technique is based on 3D tracking of the mark-
ers attached to the person’s body in the scene without need for an
explicit 3D model. We fit a generic 3D skeleton model to detect and
track markers. We make use of the multistereo correspondence in-
formation from multiple cameras to obtain 3D positions of the mark-
ers. This provides us with a set of 3D point locations over time that
expresses the alignment of the markers in 3D world. We employ
Kalman filtering for smoothing out the observations and predicting
the next target locations of the points in that point cloud in a simi-
lar fashion explained in [6]. The resulting set of 3D points are then
used to analyze the correlation between the audio patterns and body
motion patterns according to [7].

2. MULTICAMERA MOTION CAPTURE

The motion capture process involves tracking a number of markers
attached to the subject’s body as observed from multiple cameras and
extraction of the corresponding motion features. Figure 1 demon-
strates our setting for this scenario. Markers in each video frame
are tracked making use of their chrominance information. The 3D
position of each marker at each frame is then determined via trian-
gulation based on the observed projections of the markers on each
camera’s image plane.

2.1. Initialization

Markers on the subject are manually labeled in the first frame for
all camera views. We change the color space from RGB to YCrCb
which gives flexibility over intensity variations in the frames of a
video as well as among the videos captured by cameras at different
views. We assume that the distributions of Cr and Cb channel in-
tensity values belonging to marker regions are Gaussian. Thus, we
calculate the mean, μ, and the covariance, Σ, over each marker re-
gion (a pixel neighborhood around the labeled point), where μ =
[μCr, μCb]

T and Σ = (c− μ)(c− μ)T , c being [cCr, cCb]
T .

Let M be the number of markers on the subject and W be the
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Fig. 1. Dance scene captured by the 8-camera system available at Koç University. Markers are attached at or around the joints of the body.

set of search windows, where W = [w1,w2, . . . ,wM ] such that
each window wm is centered around the location, [xm, ym]T , of
the corresponding marker. The set W is used to track markers over
frames. Thus the center of each search window, wm, is initialized as
the point manually labeled in the first frame and specifies the current
position of the marker.

2.2. Tracking

To track the marker positions through the incoming frames, we use
the Mahalanobis distance from c to (μ,Σ) where c is a vector con-
taining Cr and Cb channel intensity values [cCr, cCb]

T of a point
xn ∈ wm. Let X = [x1,x2, . . . ,xN ] be the set of candidate pixels
for which the chrominance distance is less than a certain threshold.
If the number of these candidate pixels, N , is larger than a predefined
value, then we label that marker as visible in the current camera view
and update its position as the mean of the points in X for the current
camera view. The same process is repeated for all marker points in
all camera views. Hence, we have the visibility information of each
marker from each camera, and for those that are visible, we have
the list of 2D positions of the markers on that specific camera image
plane.

Once we scan the current scene from all cameras and obtain the
visibility information for all markers, we start calculating the 3D po-
sitions of the markers by back-projecting the set of 2D points which
are visible in respective cameras, using triangulation method. Theo-
retically, it is sufficient to see a marker at least from two cameras to
be able to compute its position in 3D world. If a marker is not visible
at least from two cameras, then its current 3D position is estimated
from the information in the previous frame.

The 3D positions of markers are tracked over frames by Kalman
filtering where the filter states correspond to 3D position and velocity
of each marker. The list of 3D points obtained by back-projection of
visible 2D points in respective camera image planes constitute the
observations for this filter. This filtering operation has two purposes:

• to smooth out the measurements for marker locations in the
current frame,

• to estimate the location of each marker in the next frame and
to update the positioning of each search window, wm, on the
corresponding image plane accordingly.
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Fig. 2. Block diagram of the proposed tracking system.

Figure 2 summarizes the overall system. Having updated the
list of 3D marker positions for the current frame and estimated the
location of the search windows for the next frame, we move on to
the next frame and search the marker positions within the new search
windows. This algorithm is repeated for the whole video. The list of
3D marker positions over frames constitutes the body motion feature
vector that will be used later in the animation process.

3. AUDIO-VISUAL DANCE ANALYSIS

In this section, we describe a two-step analysis framework based on
unsupervised temporal segmentation. The first step aims to sepa-
rately extract elementary body motion and audio patterns, and the
second step determines a correlation model between these body mo-
tion and audio patterns.

3.1. Audio Features

One can consider the act of dancing as the natural response of the
body to the rhythm of the sound. MFCCs are good choices for rep-
resenting the audio features in our scenario since they approximate
the human auditory system’s response to the sound, which eventu-
ally shapes the movements of the body while dancing. Hence, our
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Fig. 3. Tracking of markers for a single view.

audio features are composed of MFCCs.

3.2. Multimodal Analysis

The first stage analysis defines recurrent elementary body motion
and audio patterns separately using unsupervised temporal clustering
over individual feature streams. The body motion and audio feature
streams Fb and Fa are separately used to train two HMM structures
Λb and Λa, which capture recurrent body motion segments εb and
audio segments εa. For ease of notation, we use a generic notation to
represent the HMM structure which is identical for body motion and
audio streams. The HMM structure Λ, which is used for unsuper-
vised temporal segmentation, has M parallel branches and N states.
The states labeled as ss and se are non-emitting start and end states
of the parallel HMM structure. The parallel HMM Λ is composed
of M parallel left-to-right HMMs, {λ1, λ2, . . . , λM}, where each
λm is composed of N states, {sm,1, sm,2, . . . , sm,N}. The state
transition matrix Aλm of each λm is associated with a sub-diagonal
matrix of AΛ. The feature stream is a sequence of feature vectors,
F = {f1, f2, . . . , fT }, where ft denotes the feature vector at frame
t. Unsupervised temporal segmentation using HMM model Λ yields
L number of segments ε = {ε1, ε2, . . . , εL}. The lth temporal seg-
ment is associated with the following sequence of feature vectors,

εl = {ftl , ftl+1, . . . , ftl+1−1} l = 1, 2, . . . , L (1)

where ft1 is the first feature vector f1 and ftL+1−1 is the last feature
vector fT .

The segmentation of the feature stream is performed using Viterbi
decoding to maximize the probability of model match, which is the
probability of feature sequence F given the trained parallel HMM
Λ,

P(F|Λ) = max
tl,ml

L∏

l=1

P({ftl , ftl+1, . . . , ftl+1−1}|λml)

= max
εl,ml

L∏

l=1

P(εl|λml) (2)

where εl is the lth temporal segment, which is modeled by the mth
t

branch of the parallel HMM Λ. One can show that λml is the best
match for the feature sequence εl, that is,

ml = argmax
m

P(εl|λm) (3)

Since the temporal segment εl from frame tl to (tl+1 − 1) is associ-
ated with segment label ml, we define the sequence of frame labels

based on this association as,

�t = ml for t = tl, tl + 1, . . . , tl+1 − 1 (4)

where �t is the label of the tth frame and we have a label sequence
� = {�1, �2, . . . , �T } corresponding to the feature sequence F. The
first stage analysis extracts the frame label sequences �b and �a given
the body motion and audio feature streams Fb and Fa. While map-
ping the body motion and audio features to discrete frame labels, the
mismatch between the frame rates of body motion and audio is elim-
inated by downsampling the frame rate of audio label stream to the
rate of body motion label stream.

In the second stage, we perform a joint analysis of body motion-
audio labels to detect the correlation between body motion and audio
patterns and to extract recurrent joint label patterns. This joint cor-
relation analysis will be based on the co-occurrence matrix obtained
from the co-occurring body motion-audio events.

4. RESULTS

We have conducted experiments on a synchronously captured audio-
visual data of a dancing person. The dance video is 3 minutes and
15 seconds long with a rate of 30 frames per second. We calculate
the mean values and covariance matrices of Cr and Cb channels to
build a Gaussian model for each marker and center our search win-
dows around the manually labeled points in the first frame. Figure 3
demonstrates the performance of our tracking scheme after initial-
ization in the first frame.

The parallel HMM structure has two important parameters to set
before the training of the model Λ. The first parameter is the num-
ber of states in each branch, N . It should be selected by considering
the average duration of temporal patterns. Selecting a small N may
hamper modeling long term statistics for each branch of the parallel
HMM. The extreme case N = 1 reduces to K-Means unsupervised
clustering. The number of states in each branch of the body mo-
tion HMM model Λb is selected to be NΛb = 10, assuming that
minimum motion pattern duration is 1

3
sec (10 frames). Note that,

body motion patterns longer than 10 frames can be modeled with the
self-state transitions in the HMM structure. On the other hand, the
number of temporal patterns for audio is set to NΛa = 5 states in
each branch of the audio HMM model Λa to model audio patterns.

The second parameter is, M , the number of temporal patterns.
Since the number of body motion and audio patterns is dancer and
database dependent, we propose an iterative approach for selection
of M . For varying values of M , we check two fitness measures.
The first fitness measure is the probability of model match, which
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increases with the increasing number of temporal patterns. Conse-
quently, the second fitness measure, which is the average statistical
separation between two similar temporal patterns, increases with the
decreasing number of temporal patterns.

The first fitness measure α, which is inversely related to in-class
variance, is defined as the frame average of the log-probability of
model match,

α =
1

T
log(P(F|Λ)) (5)

The α measure is expected to saturate with increasing number of
parallel branches in Λ, since the training database is expected to
contain limited number of temporal patterns. However, small varia-
tions within temporal patterns are also expected, hence the number
of branches M , which saturates α measure, can be more than the
actual number of temporal patterns in the training corpus. In or-
der to make a better estimate of M , the second fitness measure β is
considered as the average statistical separation between two similar
temporal patterns, and it is defined as,

β =
1

T

L∑

l=1

log(
P(εl|λml)

P(εl|λm∗
l
)
), (6)

where λm∗
l

is the second best match for the temporal segment εl,
that is,

m∗
l = argmax

∀m�=ml

P(εl|λm) (7)

While M is increasing, the HMM branch models λml and λm∗
l

are
expected to be similar, which decreases the β measure. Therefore,
the total number of temporal patterns, M , can be selected by jointly
maximizing the α and β measures.

Fig. 4. Results of iterative approach for selection of M .

Figure 4 shows us that M = 5 maximizes α and β measures
jointly. Hence, our HMM models for body and audio pattern analysis
consists of 5 branches each.

Table 1 demonstrates the co-occurrence relation between the
body motion and audio patterns obtained as a result of our first stage

analysis. Each row in the table displays the co-occurrence percent-
ages of different audio patterns with body motion patterns over the
whole video. According to this co-occurrence matrix, the body mo-
tion pattern Ve is the most repetitive one in our audio-visual data.
Nevertheless, when we look at the co-occurrence relation of the
first audio pattern, i.e. Aa, we see that it is also highly correlated
with the body motion patterns Va. On the other hand, Aa never co-
occurs with the body motion patterns Vc and Vd. The audio-visual
sequences for each body motion patterns are available online [8].

Table 1. Co-occurrence matrix for body motion-audio events.

Va Vb Vc Vd Ve

Aa 40.43 8.51 0.00 0.00 51.06

Ab 5.49 12.09 13.19 6.59 62.63

Ac 10.99 2.20 0.00 4.95 81.86

Ad 0.00 2.94 0.00 2.94 94.12

Ae 22.22 8.55 28.21 4.27 36.75

5. CONCLUSIONS

Results of our analysis indicate that certain motion patterns are highly
correlated with the audio channel. The temporal patterns of cor-
related visual motion and audio should prove useful for synthetic
agents and/or robots to learn dance figures from audio.
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