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ABSTRACT
Trajectories of moving objects provide crucial clues for

video event analysis especially in surveillance applications.
In this paper, we study the problem of detecting anomalous
events by analyzing the motion trajectories in videos. Differ-
ent trajectories of the same category may have varying rela-
tive velocities, in addition to the variations and noises in lo-
cation samples; hence the core of the problem is to provide
a robust and accurate function for measuring the similarities
of trajectory pairs. We propose a novel learning based algo-
rithm for estimating the similarities of the multi-dimensional
sequence pairs, and then an anomaly detection framework is
presented to detect anomalous motion trajectories in surveil-
lance videos. Our proposed algorithm offers several advan-
tages over the traditional algorithms for dealing with the tra-
jectories of moving objects. First, the similarity measurement
is robust against data imperfections such as noise, algorith-
mic error and etc. Second, we introduce a learning algorithm
which allows the similarity function to be adapted to the par-
ticular problems being solved. Third, the proposed anomaly
detection framework is fully automatic and without paramet-
ric distribution assumption on the data. The experiments on
both outdoor and indoor surveillance videos validate the ef-
fectiveness of our proposed framework in detecting anoma-
lous trajectories.

1. INTRODUCTION

Detecting anomalous patterns from video sequence is use-
ful for many applications such as surveillance, novelty ex-
traction, automatic inspection and etc. The identification of
anomalies can lead to the discovery of truly novel information
from the video, e.g. suspicious object movements and/or rare
trajectory patterns. With recent advances in visual tracking,
it becomes feasible to obtain the trace of moving objects with
reasonable accuracy from surveillance videos. This could be
a very important source of features for event detection.

Previous research on abnormal activity detection can be
roughly divided into two categories: parametric approaches
and non-parametric approaches. For the first category [1], the
explicit parametric model for normal and/or abnormal activ-
ities is constructed based on the features extracted from the

observed data. Visual features such as position, speed, ap-
pearance and etc. can be extracted from object detection and
tracking algorithms [2][3][4]. These models are either rule-
based or obtained from supervised machine learning tech-
niques - most by probabilistic graphical models [5][6][7]. The
second category, on the other hand, does not explicitly prede-
fine the models for the normal events, instead learns the nor-
mal and abnormal patterns from the statistical properties of
the observed data. In [8], joint co-occurrence statistics of ob-
ject trajectories over a codebook are accumulated and hierar-
chical classification algorithm is applied to identify activities.
[9] uses feature descriptor vectors to represent an image and
detect unusual activities in a co-embedding space. In [10], a
video is considered regular if it can be composed from large
chunks of spatial-temporal patches, and the irregular videos
are detected by probabilistic inference in graphical model.

The rest of the paper is organized as follows. Section 2
introduces a similarity measurement of motion trajectory, and
we develop a parameter learning algorithm for the similarity
measurement in Section 3. Section 4 describes the system
for detecting surveillance anomaly. The experimental results
are demonstrated in Section 5 and we conclude this paper in
Section 6.

2. MEASURING TRAJECTORY SIMILARITY

2.1. Requirements for trajectory similarity measurement

In video surveillance, the object trajectories are often obtained
from certain tracking algorithm. The target of a tracking al-
gorithm is to discover objects that move in a similar motion
pattern or follow certain routine. A similarity measurement
between trajectories of moving objects becomes necessary in
dealing with such data. Due to the speciality of the trajectory
data, the similarity measurement should meet three require-
ments. First, it should be able to compare trajectories with
different lengths and different number of location samples.
Second, the similarity measurement should be robust to sen-
sor/algorithm noise and outliers. Third, it should be able to
handle local temporal shifts, i.e. the shifts of sub-trajectories
in time space. Local temporal shifts are usually caused by
variance in sampling rate, object velocity and etc.
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2.2. Edit distance and its generalization for real sequences

Edit distance [11] is widely used in text analysis, speech pro-
cessing, and bio-informatics for comparing two strings. It can
be extended to measure the similarity between two strings of
real numbers. The edit distance of trajectories Xm and Y n

with lengths m and n is defined as follows:

ED(Xm, Y n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞, if m = 0 and n = 0;
n · cins, if m = 0 and n �= 0;
m · cdel, if m �= 0 and n = 0;
min{ED(Xm−1, Y n) + cdel,
ED(Xm−1, Y n−1) + c(xm, yn),
ED(Xm, Y n−1) + cins}, else,

(1)

where xm and yn are the m-th and n-th elements of the tra-
jectories Xm and Y n respectively, c is the cost function such
that c(xm, yn) = cmatch if dist(xm, yn) ≤ ε; c(xm, yn) =
cmismatch if dist(xm, yn) > ε. cmatch, cmismatch, cins, cdel

are the costs for match, mismatch, insertion, deletion respec-
tively. By symmetry we have Cins = Cdel. ε is the matching
threshold that quantizes the noise effect to distance cmatch or
cmismatch. The edit-distance is essentially the minimum cost
of operations required to transform one trajectory sequence to
another one.

The edit distance can be efficiently computed by using
dynamic programming with a computational complexity of
O(m · n). The edit distance is non-metric since it does not
obey the triangle inequality rule. An appropriate similarity
measurement for trajectory pair can be obtained by normaliz-
ing the edit distance with the sum of the trajectory lengths,

ED(Xm, Y n)
m + n

. (2)

3. LEARN TRAJECTORY SIMILARITY FUNCTION

Traditional edit-distance needs manually tune the parameters
for specific applications. For instance, comparing the shape
of trajectories does not require to penalize local temporal shift
while comparing both the shape and velocity of trajectories
requires to consider local temporal shift. This penalty deter-
mines the costs for insertion and deletion and is different for
various applications.

We developed an supervised algorithm to automatically
learn the cost function of edit-distance. The proposed algo-
rithm is based on Expectation-Maximization (EM) [12] ap-
proach. To better present the algorithm, we first introduce a
probabilistic model for the edit distance. Let E denote the
set of edit-operations, i.e. E = {match, mismatch, insertion,
deletion}. We define a probability function p such that:

p(e) ∈ [0, 1], e ∈ E ∪ {∗}, p(∗) > 0,
∑

e∈E∪{∗}
p(e) = 1,

where ∗ is symbol for the end of the edit sequence.

Let (e1, e2, ..., el, ∗)X,Y be the sequence of edit-operations
that transform X into Y . The probability of the edit-operation
sequence is:

p((e1, e2, ..., el)X,Y ) =
l∏

i=1

p(ei) · p(∗)

If we let ce to be the negative logarithm of the edit-operation
probability: ce = − log p(e), the edit-distance is the negative
logarithm of the maximum probability of edit-operation se-
quence that transform X to Y , which we denote as P (X,Y ).
Therefore computing the edit-distance equals to computing
the most likely edit-operation sequence or Viterbi sequence.
It can be efficiently estimated by Viterbi algorithm using dy-
namic programming.

The edit distance parameter learning problem is formally
defined as follows: for a given set of training data consisting
of similar trajectory pairs {(X1, Y1), (X2, Y2), ..., (Xs, Ys)},
we expect to find the probability function p(e) or ce, such
that the probability product of the most-likely edit-operation
sequences of them are maximized:

{p(e)}∗ = arg max
{p(e)}

s∏

i=1

P (Xi, Yi).

Ristad and Yianilos [13] developed a generative model for
string edit-distance and utilized EM approach for training the
model parameters, which is similar to the Baum-Welch algo-
rithm for training HMM. In this paper, we extend the learning
algorithm from sequences of discrete symbols to real-valued
sequences. EM consists of two steps: E-step and M-step, and
alternates between E-step and M-step until converged. The
E-step and M-step are described as follows:

1. E-step Given current estimate of edit operation proba-
bility, compute the most likely edit sequence for each
similar trajectory pairs by Viterbi algorithm. Compute
the frequency of occurrence of each edit operation.

2. M-step Maximize its likelihood with respect to the prob-
ability of each edit operation using Eq 3. #(ec) repre-
sents the frequency of occurrence for edit operation ec.
The frequency of occurrence of ∗ is manually set to be
a small positive constant to ensure p(∗) > 0.

p(ec) =
#(ec)∑

ej∈E∪{∗}#(ej)
(3)

The EM algorithm in our algorithm differs from the al-
gorithm in [13], and in the E-step, our algorithm computes
the edit operation frequency using Viterbi algorithm instead
of forward-backward algorithm as in [13]. With this modifi-
cation, the traditional edit distance is directly connected with
the probabilistic model of edit operations. The EM approach
is guaranteed to converge to a local optimum on a given input.
Our experiments suggest that such local optima can be effec-
tively reduced with good initialization and random restart.
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1. Distance matrix computation: Compute the dis-
tance matrix of the trajectories in the database.

2. Clustering: Cluster the trajectories and use exam-
ple trajectories to represent each cluster.

3. Outlier detection: Given a new incoming trajec-
tory, compare it with all the clusters to decide
whether it belongs to a cluster or is a anomaly.

Fig. 1. The overview of an anomaly detection system

4. ANOMALY DETECTION

4.1. System overview

The definition of anomaly is context dependent. Supervised
approaches develop a prediction model for normal and/or ab-
normal activities from labelled data. The incoming data is
then matched against the model to find anomalies. Although
this approach can be effective in situations with limited num-
ber of activities, it is usually very difficult to label and model
a large amount of data under unconstrained environment. We
therefore choose the unsupervised definition of anomalies:
frequently occurred patterns are normal and the pattern dissi-
miliar to the majority of normal patterns is anomalous. Given
the pairwise similarity matrix of the motion trajectories, the
problem left is to identify unusual motion trajectories from
frequent trajectory dataset. Fig 1 gives an overview of the
proposed anomaly detection system.

4.2. Object detection and tracking

In this work, the object trajectories are obtained from a visual
detection and tracking system. The whole system includes
the following components: a Gaussian Mixture background
model (GMM), motion detection from background subtrac-
tion, and the appearance manifold based tracking algorithm
[14] to extract the trace of each object.

4.3. Clustering trajectories

Anomaly detection can be considered as a byproduct of clus-
tering results. After clustering the training data, clusters with
large number of data points are classified as normals while
small clusters are classified as anomalies. For a new data,
it will be compared against the large clusters and if none of
them match, it will be considered as an anomaly.

4.3.1. Clustering by spectrum clustering

In our system, we use spectral clustering algorithm [15] for
trajectory clustering. The advantages of spectral clustering
are two-fold: first, it only requires pairwise distance of data
points; second, the algorithm does not require the distance to

be metric. To cluster the data into k subsets, the spectral clus-
tering algorithm computes the largest k eigenvectors of the
normalized Laplacian matrix from the affinity matrix, which
represent the similarity between data points. Then it performs
the popular k-means clustering algorithm on the resulting k-
dimensional feature space.

4.3.2. Choosing representatives of the clusters

In many cases, the clusters are represented by the mean and
variance of their data points. However, these parameters can
not be directly obtained given that only pairwise distances
are available. We instead select a subset of the atypical data
points in the cluster as a representative set. To well approxi-
mate the atypical points of each cluster, we use a simple algo-
rithm similar to [16]: the first point in the representative set
is chosen as the point with the largest distance to all the other
data points in the cluster. Then each time the data point with
the largest distance to the current representative set is added
until the representative set reaches a predefined size nc.

4.4. Detecting anomaly from clusters

Given that the data points are associated with each other by
pairwise similarity, distance based anomaly detection algo-
rithms are preferred. The distance based algorithms do not
require any apriori knowledge of data distributions that statis-
tical algorithms often do. Moreover, the definition of anomaly
can be generalized to model statistical test for normal, Poisson
and other distributions. In our system we use the algorithm in
[17], which is an extension of k-nearest neighbor outlier de-
tection algorithm.

5. EXPERIMENTS

The anomaly detection algorithm was tested in both outdoor
and outdoor surveillance videos. The indoor and outdoor videos
are about 30 minutes long and they 24 and 11 normal trajec-
tories respectively. We use 60% of the data to train the cost
function. The videos are sampled at the frequency of 30 Hz.
In all experiments ε is set to half of the object bounding box
width and p(∗) = 0.01.

Figure 2 demonstrates the experimental results of anomaly
detection in traffic surveillance videos. The object with nor-
mal trajectory is highlighted using white bounding-box and
the object with anomalous trajectory is highlighted using black
bounding-box. In this video the normal trajectories are clus-
tered into two classes. The upper row shows four typical
frames of tracking result of a normal vehicle trajectory. The
lower row shows a detected trajectory anomaly in which the
car pulled over the road and stopped for a while. It is obvious
that the anomalous trajectory differs from normal trajectories
in both shape and velocity.
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Fig. 2. Anomaly detection in road surveillance.

Fig. 3. Anomaly detection in indoor surveillance.

Figure 3 shows the anomaly detection results in indoor
surveillance videos. The normal motion trajectories include
two clusters in which people went down the hallway in two
opposite directions. The first row demonstrates a typical nor-
mal trajectory. The second row shows an anomalous event
in which the person loitered in the middle of the corridor for
a while and dropped a bag. The third row gives another ex-
ample of anomalous trajectory in which a person turned back
and disappeared. In both cases our algorithm successfully de-
tected the anomalies by the motion trajectory from the track-
ing algorithm.

6. CONCLUSION

In this paper, we presented a supervised algorithm to adap-
tively learn the parameters of edit distance for computing the
similarity of motion trajectories. Then a fully automatic anoma-
lous event detection system was proposed for surveillance
videos. The anomaly detection was posed as general outlier
detection problem in a non-parametric distance-based frame-
work. Our future work will focus on: 1) extend the anomalous
event detection algorithm to utilizing a larger feature space,
and 2) propose novel machine learning algorithm for bridging
the gap between original raw features and semantic events.
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