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ABSTRACT

Graph-based semi-supervised learning (SSL) has attracted lots of
interests in machine learning community as well as many applica-
tion areas including video annotation recently. However, one of the
two basic assumptions, structure assumption, which is an essential
point of graph-based SSL, is not embedded into the pairwise simi-
larity measure. Accordingly, we propose a novel graph-based SSL
method for video annotation, named Anisotropic Manifold Rank-
ing (AniMR), based on a structure-related similarity measure. This
method takes the influence of the density difference between samples
into account to improve the pairwise similarity. Furthermore, we will
show that AniMR can also be deduced from partial differential equa-
tion (PDE) based anisotropic diffusion. It demonstrates that the label
propagation in AniMR is anisotropic, which is intrinsically different
from the isotropic label propagation process in general graph-based
SSL methods. Experiments conducted on the TRECVID data set
show this approach outperforms ordinary graph-based SSL methods
and is effective for video semantic annotation.

1. INTRODUCTION

Automatic annotation (also called as high-level feature extraction in
TRECVID [1]) of video and video segments is essential for enabling
semantic-level video search. As manually annotating large video
archive is labor-intensive and time-consuming, efficient automatic
annotation methods are desired. To this end, generally statistical
models are built from manually pre-labeled samples, and then the la-
bels are automatically assigned to the unlabeled samples using these
models. However, this process has a major obstacle: frequently the
labeled data is limited so that the distribution of the labeled data typ-
ically can not well represent the distribution of the entire data set
(including labeled and unlabeled), which usually leads to inaccurate
annotation results.

Semi-supervised learning (SSL), which attempts to learn from
both labeled and unlabeled data, is a promising approach to deal
with the above issue. As a major family of SSL, graph-based meth-
ods have attracted more and more researchers’ attention recently.
Many works on this topic are reported in the literature of machine
learning community [2][12][13][14] and some of them have been
applied to image or video semantic annotation. In [4], manifold-
ranking is applied to propagate label information of image samples
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Fig. 1. Example for the influence of structure assumption

from positively-labeled ones to unlabeled ones. Wang et al.[9] pro-
pose a method based on random walk with restarts to refine the im-
age annotation results. In [11], a manifold ranking method based on
feature selection is proposed for video concept detection. Tang et
al.[10] embed the temporal consistency of video data into the graph
based SSL and propose a temporally consistent Gaussian random
field method for video annotation.

Graph-based SSL actually relies on two basic assumptions [12]:
neighborhood assumption: nearby points are likely to have the same
label; structure assumption: points on the same “structure” (typi-
cally referred to as a cluster or a manifold) are likely to have the
same label. Pairwise similarity measure is essential for graph-based
methods, as it is the basis of label propagation. The first assumption
is easily to be enforced into the pairwise similarity as

wij =

�
exp(− ||xi−xj ||2

2σ2 ) i �= j

0 i = j
. (1)

However, the second assumption is not taken into account in this typ-
ical similarity definition. Instead it is generally combined into most
methods by an iterative label propagation process, but the propaga-
tion is still “isotropic” though weighted by distance. It means that
the direct contribution from one sample to another, which is propor-
tional to the pairwise similarity, neglects the influence of the struc-
ture difference. We believe that embedding the structure assumption
into the pairwise similarity will further improve the performance of
normal graph based SSL methods. Fig.1 shows an exemplary case,
where each point represents a sample in the feature space. The dis-
tance between A and C is equal to the distance between A and B, that
is, wAC equals to wAB according to the normal similarity measure
defined in (1). However, it is more reasonable if the similarity wAB

is larger than wAC , as A and B are on the same structure while A and
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C are on different structures. According to the structure assumption,
it is necessary to prevent the propagation between different clusters.
That is to say, it is more appropriate to make the direct propagating
strength between samples in one cluster stronger than the counterpart
in different clusters.

In this paper, we embed the structure assumption into the simi-
larity measure and propose a novel graph-based SSL method named
Anisotropic Manifold Ranking (AniMR) for video annotation. Fur-
thermore, we will show that actually AniMR can be deduced from a
partial differential equation (PDE) based anisotropic diffusion frame-
work [7][8]. From the view of PDE based diffusion, we can see
that the label propagation in AniMR is anisotropic, which is intrinsi-
cally different from the isotropic label propagation process in general
graph-based methods. That is why we call our method Anisotropic
Manifold Ranking.

2. ANISOTROPIC MANIFOLD RANKING

Let X = {x1, x2, ..., xl, xl+1, ..., xn} be a set with n samples (i.e.,
video shots for our application) in Rm (m-D feature space). The
first l samples are labeled as fL = [f1, f2, ..., fl]

T with fi ∈ {1, 0}
(1 � i � l) and the remaining samples xu(l + 1 � u � n) are
unlabeled. Consider a connected undirected graph (V, E) with the
vertex set V corresponding to the n data points. V = L

�
U , where

the vertex set L = {1, ..., l} contains labeled points and the vertices
in set U = {l+1, ..., l+u} are unlabeled. The edges E are weighted
by the n× n pairwise similarity matrix.

As aforementioned, the similarity measure will be more accurate
if embedding the structure assumption into it. It is intuitive that gen-
erally the density variation within a cluster is smaller than the density
variation between different clusters. We assume that the similarity
between two samples, not only decreases with respect to the incre-
ment of their distance in the feature space, but also decreases with
the increment of their density difference. This pairwise similarity is
more consistent with the structure assumption.

Define a density similarity matrix G with entries:

gij = exp(− (pi − pj)
2

2σ2
p

), (2)

where pi is the probability density of sample xi. And the new structure-
related similarity matrix is defined as

W̃ = W •G, (3)

where • represents the Hadamard product [5] and W is the normal
similarity matrix with entries wij , defined in (1). Therefore, the
entry of i-th row and j-th column in W̃ is

w̃ij = wij · gij = exp(−||xi − xj ||2
2σ2

) · exp(− (pi − pj)
2

2σ2
p

) (4)

while i �= j and w̃ii = 0. The first term in the right side of (4) shows
that the similarity between two samples decreases with respect to
the increment of their distance in the feature space; and the second
one indicates that the similarity decreases with the increment of the
density difference. That is to say, this similarity definition not only
considers the neighborhood assumption, but also takes the structure
assumption into account.

Our objective is to obtain the real-valued labels for the unlabeled
samples. Motivated by the two basic assumptions, we obtain the
prediction function by minimizing the energy function

E(f) =
1

2

n�
i,j=1

wijgij(fi − fj)
2, (5)

subjects to the invariant constraint for the labels of the labeled data,
that is f∗L = fL. Similar to [14], we can see the minimum en-
ergy function f∗ = argminf∗L=fLẼ(f) is harmonic. That is to

say, it satisfies Δ̃f = 0 on the unlabeled samples. Here Δ̃ is
the combinatorial Laplacian [3], represented with matrix form as
Δ̃ = D̃−W •G, where D̃ = diag(d̃i) is the diagonal matrix with
entries d̃i =

�n
j=1 wijgij .

According to the harmonic property, the value of f wrt any sam-
ple is the weighted average of the values wrt its neighboring samples.
That is,

fi =
1�n

j=1 wijgij

n�
j=1

wijgijfj =
1

d̃i

n�
j=1

w̃ijfj . (6)

Then the direct propagating strength from sample xi to xj is:

�sij =
w̃ij

d̃i

=
wijgij�n

j=1 wijgij
(7)

It is easy to see that �sij � 0, �sii = 0 and
�n

j=1 �sij = 1.

Denote the propagation matrix as S̃ = D̃−1(W • G) and the
predicted label vector of the entire data set with f. Combine (6) and
(7), and represent it in matrix manner, we have:

f = S̃f. (8)

Split the matrix S̃ after the l-th row and l-th column:

S̃ =

�
S̃LL S̃LU

S̃UL S̃UU

�
.

Also f can be split into 2 blocks after the l-th row:

f =

�
fL
fU

�
.

Then (8) will be transformed to:�
fL = S̃LLfL + S̃LU fU
fU = S̃ULfL + S̃UU fU

Enforce the constraint f∗L ≡ fL and solve the second linear equation,
consequently we obtain the optimal solution for fU :

f∗U = (I − S̃UU )−1S̃ULfL. (9)

In next section, we will show that this result also can be deduced in
an iterative manner from a novel viewpoint, that is, PDE based dif-
fusion. We will also show that the label propagation in this method
is anisotropic while the propagation in the normal graph-based SSL
methods is isotropic.

3. ANALYSIS FROM THE VIEW OF DIFFUSION

The discrete version of the heat diffusion equation [8], ∂f
∂t

= Δf ,
where Δ is the combinatorial Laplacian, can be written as:

f
(t+1)
i − f

(t)
i =

1

di

�
j �=i

wij(f
(t)
j − f

(t)
i ). (10)

Using the matrix representation, we have:

f(t+1) − f(t) = (D−1W − I)f(t),
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and therefore

f(t+1) = D−1W f(t) = Sf(t),

where W = [wij ]n×n is the similarity matrix with wii = 0, S is the
normalization of W with the entries sij =

wij

di
and D = diag(di)

is the diagonal matrix with entries di =
�n

j=1 wij . Enforce the

constraint f(t)L ≡ fL into the above equation, we get:

f(t)U = SULf(t−1)
L + SUU f(t−1)

U (11)

= SULf(t−1)
L + SUU (SULf(t−2)

L + SUU f(t−2)
U )

= ...

= (
t−1�

i=0

Si
UU )SULfL + St

UU f(0)U

It is obvious that sij � 0, sii = 0 and
�n

j=1 sij = 1, S and SUU

are both non-negative matrices. When we connect each vertex to all
other vertices (the case of a sparse representation of the matrix will
be discussed in Section 4), every vertex j ∈ L will satisfy sij > 0
when j �= i, which results in that

�
j∈L sij > 0. Therefore we have

�

j∈U

sij =
n�

j=1

sij −
�

j∈L

sij � 1−
�

j∈L

sij < 1.

According to the spectral diameter bound for the non-negative ma-
trix in the matrix theory [5], that is,

min1�i�n

n�

j=1

aij � ρ(A) � max1�i�n

n�

j=1

aij , (12)

we have:
ρ(SUU ) � maxl+1�i�n

�

j∈U

sij < 1. (13)

Therefore we get limt→∞
�t−1

i=0 Si
UU = limt→∞(I−SUU )−1(I−

St
UU ) = (I − SUU )−1 and limt→∞St

UU = 0, where 0 is a (n −
l) × (n − l) matrix with each entry equals to 0. Through iterations
until convergence, the optimal result will be obtained:

f∗U = limt→∞f(t)U = (I − SUU )−1SULfL (14)

This result is the same as the result of a normal graph based SSL
method: Gaussian Random Field (GRF) [14]. Since the heat diffu-
sion is isotropic, the label propagation procedure in this method is
distance weighted isotropic, which is not accordant with the struc-
ture assumption of graph-based SSL.

As aforementioned, structure assumption encourages propagat-
ing label information within a region with uniform or close density
in preference to propagating across the density boundaries. Accord-
ingly, we consider an anisotropic diffusion equation:

∂f

∂t
= div(g(|∇p|)∇f) (15)

This is a higher dimensional generalization of the anisotropic diffu-
sion equation in [7], where g(x) is a nonnegative decreasing func-
tion and p is the density distribution. Discretize the equation like the
Perona-Malik Discrete Formulation [7][8], we have

f
(t+1)
i − f

(t)
i =

γi�n
j=1 wij

�

j �=i

wijgij(f
(t)
j − f

(t)
i )

where wij is the distance weighted similarity and gij is the density
similarity.

Set γi =
�n

j=1 wij/
�n

j=1 wijgij and notice that wii = 0, we
have:

f
(t+1)
i − f

(t)
i =

1�n
j=1 wijgij

n�

j=1

wijgij(f
(t)
j − f

(t)
i ) (16)

Represent (16) using matrix form, we obtain:

f(t+1) = f(t) + (D̃−1(W •G)− I)f(t)

= D̃−1(W •G)f(t) = S̃f(t) (17)

where S̃ represents the matrix whose entry in i-th row and j-th col-
umn is

wijgij�n
j=1 wijgij

and s̃ii = 0. This matrix takes both the pair-

wise distance and density difference into consideration. Then the
predicted label vector of unlabeled data will be obtained:

f(t)U = S̃ULf(t−1)
L + S̃UU f(t−1)

U . (18)

It is worthy to notice that, although (18) have the similar form with
(11), they have different intrinsic meanings: the label propagation in
(11) is distance weighted isotropic while the propagation in (18) is
density-sensitive anisotropic.

Enforce the constraint f(t)L ≡ fL, similar to the process above we
can obtain the result:

f∗U = limt→∞f(t)U = (I − S̃UU )−1S̃ULfL (19)

Consequently, we deduced the same result of AniMR from the view-
point of anisotropic diffusion. The deep researches in PDE based
diffusion [8] will give us new insights for graph-based SSL.

4. IMPLEMENTATION ISSUE

In the AniMR algorithm, we have to calculate the inversion or the
multiplication of the large-scale matrices in (9) or in the iterations of
(18), which are difficult to be implemented subject to the limitation
of both the computing ability and the memory quantity. For example,
the video data set typically is very large (e.g., TRECVID05 dataset
has about 126,000 sub-shots); it is difficult to storage the similarity
matrix and compute its inversion. To deal with this issue, we sim-
plify the graph by only connecting neighboring points, thus matrices
W̃ and S̃ are sparse, which are calculated off-line. In this way, the
quantity of memory and the processing time requested are greatly
reduced.

There are two methods to find appropriate set of neighboring
points for calculating the sparse representation of the matrices W̃
and S̃ [6]: (a), k-NN: find the k nearest neighbors for each point;
and (b), ε-NN: find nearest neighbors in the super-sphere centered at
current point with radius of ε.

Another issue is to guarantee the convergence of the iterations.
As aforementioned, for each sample xi,

�
j∈U s̃ij < 1 a necessary

condition to ensure the convergence of the iteration process (18). But
when we use k-NN or ε-NN to choose the connecting neighbors, this
requirement may not be satisfied since the chosen neighbors may all
belong to the unlabeled set U , then

�
j∈U s̃ij will equal to 1. That

is to say, we cannot ensure the convergence of the iterative process
in this case.
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To tackle this difficulty, we introduce a degradation factor λ
(λ = 1− δ, where δ is a small arithmetic number) into (17) as:

f(t+1) = λS̃f(t).

Subject to the invariant constraint f(t)L ≡ fL, we obtain:

f(t)U = λS̃ULf(t−1)
L + λS̃UU f(t−1)

U (20)

=

t−1�

i=0

(λS̃UU )i(λS̃UL)fL + (λS̃UU )tfU

It have been shown that
�

j∈U s̃ij � 1 and 0 < λ < 1, which easily

result in ρ(λS̃UU) < 1. This leads to limt→∞
�t−1

i=0(λS̃UU )i =

(I − λS̃UU )−1 and limt→∞(λS̃UU )t = 0. Therefore we have:

f∗U = limt→∞f(t)U = (I − λS̃UU )−1(λS̃UL)fL. (21)

In the applications with large-scale data, we can use (20) to replace
(18) to implement AniMR.

5. EXPERIMENTS

In the following experiments, we use the video corpus of TRECVID
2005, which is consisted of about 170 hours of TV news videos
from 13 different programs in English, Arabic and Chinese. After
automatic shot boundary detection, the development (DEV) set and
the evaluation (EVAL) set contain 43907 and 45766 shots, respec-
tively. Some shots are further segmented into sub-shots, and there
are 61901 sub-shots for DEV and 64256 for EVAL set respectively.

The high-level feature extraction task is to detect the presence
or absence of 10 predetermined benchmark concepts in each shot in
the EVAL set. The 10 semantic concepts are walking running, explo-
sion fire, maps, flag-US, building, waterscape waterfront, mountain,
prisoner, sports and car with concept IDs 1038 ∼ 1047. For each
concept, systems are required to return ranked-lists of up to 2000
shots, and system performance is measured via non-interpolated mean
average precision (MAP), a standard metric for document retrieval.

The low level features we used here are 225-D block-wise color
moments in LAB color space, extracted over 5 × 5 fixed grid parti-
tions, where each block is described by a 9-D feature.

Using the AniMR method, the 64256 sub-shots are labeled as
f(subshoti), and the sub-shots in the same shot are merged using
the maximum rule:

f(shotm) = maxsubshoti∈shotm(f(subshoti)) (22)

Then the shots are ranked according to f(shotm).
The annotation evaluation results compared with SVM and two

popular graph-based SSL methods (GRF [14] and consistency method
[12]) are shown in Fig.2. The density is estimated by the distance
weighted Parzen window [6]. The parameters in these methods are
all tuned to be nearly optimal through 5-fold cross validations while
λ is empirically set to 0.99. Comparing the results, we can see that:
AniMR outperforms SVM for the concepts of maps, flag-US, build-
ing, waterscape waterfront, mountain, prisoner and sports. It ex-
ceeds GRF for all concepts; and surpasses consistency method for
walking running, maps, flag-US, building, prisoner, sports and car.
The MAP of AniMR is 0.252, which has an improvement of 9.6%,
10.6% and 4.8% over SVM, GRF and consistency method respec-
tively. These comparisons demonstrate that AniMR improves the
ordinary graph based SSL methods and is effective for video seman-
tic annotation.

Fig. 2. The results of the 10 concepts and the MAP

6. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel graph-based semi-supervised
learning method named AniMR by embedding structure assumption
into the pairwise similarity measure, and applied it to video seman-
tic annotation. Furthermore, we have analyzed the proposed method
from a novel viewpoint, PDE based anisotropic diffusion, which
demonstrates the intrinsic difference between AniMR and normal
graph-based SSL methods. Experiments conducted on the TRECVID
data set demonstrate that this method outperforms the ordinary graph-
based methods and effective for video annotation. Our future work is
to further exploit the influence of density difference from the view of
PDE based anisotropic diffusion and to find more effective solutions.
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