
AN EFFICIENT AND SCALABLE SMOOTHING ALGORITHM OF VBR STREAMS

Kaihui Li1,2, Changqiao Xu1,2, Jin Xu1,2, Yuanhai Zhang1,2
1 Institute of Software, The Chinese Academy of Sciences, Beijing, P.R. CHINA 100080

2 Graduate University of the Chinese Academy of Sciences, Beijing, P.R. CHINA 100039
kaihui01@ios.cn, changqiao@ios.cn, xujin03@ios.cn, yuanhai02@ios.cn

Abstract—In order to obtain better video quality, media files
are required to use variable-bit-rate (VBR) encoding.
However, it produces traffic burst and unbalanced resource
utilizations to translate VBR-encoded video. In this paper,
we propose a novel bandwidth smoothing algorithm, Buffer
Sharing and Bandwidth Smoothing of VBR Streams
(BSBS-VBR), which combines with prefetching and
interval caching, allows video server to transmit a
VBR-encoded stream at a fixed rate and makes users to
share a disk stream. BSBS-VBR can also allocate and adjust
buffer size dynamically according to the current request
distribution and available resources. It can reduce the peak
requirements of disk bandwidth and network bandwidth,
improve utility of the resources, and serve more users by
using this algorithm. These conclusions are proved by
comparing with several existing methods experimentally.

1. INTRODUCTION

Since video services have been an important part of our life,
and some unique features of streaming media, such as huge
size, long-lived session and demand of timely delivery, need
to consume a tremendous amount of network bandwidth and
server resources. For providing the service of video stream,
media files must be compressed by using compression
technique. The encoding technique for streaming can be
either constant-bit-rate (CBR) or variable-bit-rate (VBR).
CBR encoding enforces a constant bit rate and the video
quality is variable. VBR encoding enforces a constant
quality of video and the video bit rate is variable. Compared
with the CBR counterpart serving videos of the same
average bit rate, it can achieve better quality of video with
VBR encoding. That is, VBR-encoded video can achieve
visual quality similar to that of CBR-encoded video at lower
bit rate [1]. So, high quality video content is usually stored
and streamed in a compressed format with a VBR property.

When users are served with VBR-encoded streams, they
can get constant quality compressed video. However, due to
frequent traffic burst of bit rate, VBR streams will have high
variability in their resource requirements which can lead to
low utilization of disk and network bandwidth in the
common case [2]. For improving the utility of the resources
and system throughput, many researchers have proposed a
lot of smoothing measures which can serve more requests

by removing the peak resources requirements. These
measures can be generalized three kinds: (1) Video
Segmenting Measure, which divides a VBR encoding
stream into n segments whose rates are constant or whose
playback times are the same, then makes a programming to
these segments [3]. For example, the segments are stored in
the disk in term of different storage techniques so that they
can be retrieved respectively in a fixed period [4]; (2) to
utilize the remaining disk bandwidth and buffer space
evenly and adequately, the period lengths of retrieving data
blocks are changed dynamically according to the state of the
remaining resources, so as to maximize the throughput [5];
(3) stream data is prefetched into the server, proxy or client
buffer so that the leaving data can be obtained and
transmitted with constant bit rate [6]. For example, it can
smooth out disk bandwidth peaks by prefetching stream data
into the server buffer. Since the segments divided by Video
Segmenting Measure are different each other, it complicates
the disk retrieval. The measure, which adjusts the period
length dynamically according to available disk bandwidth
and buffer space, can consume a great deal of resource
during system run-time. The prefetching [7] needs enough
available buffer space at the server, proxy or client. This
method is effective and practical for smoothing VBR stream
in the applications that provide continuous and real-time
services with stored media files.

We propose a novel smoothing algorithm for
Video-On-Demand (VOD) application that can support
VBR-encoded stream. It combines with prefetching and
interval caching [8], allocates and adjusts buffer size
dynamically. It can reduce the peak requirements of disk
and network bandwidth, improve utility of the resources.

2. SYSTEM ARCHITECTURE AND BSBS-VBR
ALGORITHM

2.1. System Architecture

Fig. 1 shows a typical architecture of VOD. The server
includes a number of disks and a memory. A simple treating
of a request is following: when a request arrives, the server
allocates some special resources to it. Then, the accepted
client requests data periodically, the server reads the
requested data from the disk to the memory and sends them
to the client through the network, until either the end of the
stream is reached, or the client requests halt of the playback.

2441-4244-1017-7/07/$25.00 ©2007 IEEE ICME 2007

Fig. 1 The basic architecture of system

2.2. BSBS-VBR Algorithm

Buffer Sharing and Bandwidth Smoothing of VBR Streams
(BSBS-VBR) algorithm transmits the suffix of the stream at
a fixed rate by quick prefetching prefix. It can also make
many users to share data in the buffer by interval caching.
By these, this algorithm can reduce the requirement of disk
bandwidth and allocate these resources fairly according to
available disk bandwidth and cache space.

For the sake of obtaining the mathematical
representation of the problem, we assume that the stream
served by using disk stream will not consume the buffer
resource. The stream served by using buffer will only
demand relevant buffer space. The streams will be only
served by using disk or buffer.

Table 1 gives the variables used in BSBS-VBR.
Pi and Pi’ are the parameters to smooth VBR stream. In

order to allow a server to transmit a VBR stream at a fixed
rate, close to its mean encoding bit rate, we need to allocate
the size Pi’ of the buffer at the client and fetch the prefix Pi
of the stream into Pi’ before the user starts playback. The
values of Pi and Pi’ are calculated before system running by
the following methods.

Assuming that the mean bit rate of a requested stream is
b bits per second, there are total n frames in the requested
video and the size of jth frame is jf bits. The mean frame
size meanf can be calculated by (1). A Min(Pi) [9] or Min(Pi’)
can be found by (2) or (3).

ratefram
bf

n
f

n

j
jmean _

1
1

 (1)

i
1

),...,1(Pfjfnjj mean

j

k
k

 (2)

'
i

1
i

i),...,1(

PffjP

fnfjPnjj
j

k
kmean

meanmean

 (3)

If we prefetch Pi bits video data into the client buffer,
server’s mean-bit-rate suffix transmission can guarantee that
the video data will arrive before it is required to playback.
And the user will not experience any unexpected pause in
playback.

This algorithm needs to allocate Pi’ bits buffer at the
client for the requested stream so that it is sufficient to
guarantee that overflow will not occur.

After media server accepts a request, each display
served by disk stream or buffer needs to consume some
resources. According to table 1, the resources used by N
users can not exceed the total resources of the server [10].
These are shown in (4) and (5).

MM
N

i
i

1
 (4)

BB
N

i
i

1

 (5)

Here, dm is a distance threshold [11]. It limits the size of
the needed sharing buffer between two adjacent displays
referencing the same stream. If the needed buffer size
between two adjacent displays exceeds dm, they are allowed
to neither cache their intermediate data nor share one disk
stream by using memory. The requirements of the cache and
disk bandwidth are affected by the value of dm. In the
practical system, choosing optimal dm can make the best of
the existing resources. The value of T denotes the size of the
interval cache finally formed by these requests sharing one
disk stream. The value of dm is calculated by (6) in this
algorithm:

Table 1 The variables used in BSBS-VBR
Variable Description

M Size of the whole memory
B Size of the whole disk bandwidth

M’ Size of the currently available memory
B’ Size of the currently available disk bandwidth
Mi Size of the cache used by the ith request
Bi Size of the disk bandwidth used by the ith request
Bi’ Average bit rate of the requested stream

BMi’
Size of the disk bandwidth allocated to transmit Pi,
BMi’=Pi/ti

ti Start-up delay limit at the client
Pi Size of the data prefetched by ith request

Pi’
Size of the buffer allocated for the ith request at the
client, Pi’ Pi

N Number of user requests in service at some time

dm Limit of interval cache size between two adjacent
displays referencing the same video

T Size of whole interval cache of a certain video

245

)1(

)0)(2,(

)0(

'''
'

'

''''
'

'

Ni

BorBB
n

MMMMin

BandBBM
B
B

d

i

i
i

m (6)

The computation of the buffer size to be allocated
considers both available resources and disk bandwidth
required by the requested stream in (6), so that it can keep
balance of the cache and disk bandwidth consumptions.

Request management process of BSBS-VBR is
described in the following.
1) If the video A is requested by the ith request and the

requested data is in the buffer of the server, this request
will be served directly from the buffer. The server sends
the prefix Pi bits at a Max(BMi’,Bi’) rate and transmits
the suffix at a Bi’ rate after finishing Pi transmission.
The client can start playback after accumulating Pi bits
of video data.

2) If the video A is requested by the ith request and the
requested data is not in the buffer of the server, the
bandwidth Max(BMi’,Bi’) and the buffer dm calculated
by (6) (T=dm) are allocated for this request. After
finishing Pi transmission, if BMi’>Bi’ and the suffix can
be found in the buffer of the server, this request will be
served from the buffer; the disk bandwidth Max(BMi’,Bi’)
and the buffer dm, which is not used by new request, are
reclaimed. Otherwise, reclaim the disk bandwidth
(BMi’-Bi’) and do not change the buffer size.

3) If new request is served from the buffer T at the start or
after finishing Pi transmission, the size dm’ of a new
buffer is calculated by (6) and dm’ is compared with
(dm-t*Bi’), which t is the interval time between the new
request and the former request. Max(dm’,(dm-t*Bi’)) is
the size of the spare buffer that will be used to form
interval cache, namely, T=T+Max(dm’,(dm-t*Bi’)).
Above procedure repeats until no new request arrives
before the spare buffer is full.

4) If no new request for the video A arrives in the period
of the buffer remained by T, superfluous buffer space is
reclaimed at the end of T and only part of the buffer is
left to provide service for these requests arriving in this
period.

5) When new request arrives, if there are not enough
available resources and enough resources can not be
replaced (i.e., (4) or (5) is not satisfied), this request is
rejected.

6) If the service terminates, the resources of buffer and
disk bandwidth are reclaimed.

2.3. Resources Allocation and Reclamation Algorithms
of BSBS-VBR

Buffer allocation: when a new request arrives, dm is
calculated by (6). The buffer dm is allocated to the request

served by disk stream. If the request can be served from the
buffer, we compare the value of dm with the size of the
buffer, which is remaining after we have allocated and some
of them have formed interval, then set the bigger as the size
of new available buffer. If available cache is not enough, the
buffer reclamation algorithm is called.

Buffer reclamation:
1) when the end of a stream is reached, the idle buffer is

reclaimed.
2) after Pi is transmitted by the disk stream and the suffix

will be obtained from the buffer of the server, the
allocated buffer, which is not used by new request, is
reclaimed.

3) if no new request for the video A arrives in the period of
the cache remained by T, superfluous buffer space is
reclaimed at the end of T and only part of the buffer is
left to provide service for these requests arriving in this
period.

4) if available cache is not enough when new request
arrives, buffer reclamation operations as follows: (a) if
there is the buffer that has been allocated and interval
cache is not formed in it yet, we directly reclaim it. (b)
otherwise, if interval cache has been formed in Mi, there
is no adjacent request after Mi and the rate of buffer Mi
to bandwidth Bi’ is the largest, then the buffer Mi is
reclaimed, and these requests served by Mi will be
served by disk bandwidth.
Disk bandwidth allocation: when available disk

bandwidth is enough, the required bandwidth will be
allocated to the request. If available disk bandwidth is not
enough, the disk bandwidth reclamation algorithm is called.

Disk bandwidth reclamation:
1) when the end of a stream is reached, the corresponding

disk bandwidth is reclaimed.
2) after Pi is transmitted by the disk stream, the spare

bandwidth is reclaimed.
3) when available disk resource is not enough, the disk

bandwidth, which is serving the request j which has the
least interval time from the former request and is served
by disk stream, will be reclaimed and request j will be
served from the buffer.

3. EVALUATION OF BSBS-VBR

These experiments are based on the network architecture in
Fig. 1. For simplicity, we assume that all the videos are of
equal length, have equal mean bit rate, there is enough
network bandwidth and network delay between server and
client can be ignored. The server contains 100
VBR-encoded videos. We use the values of the video trace
that is a high quality MPEG-4 encoded movie Robin Hood
from [12]. The length of this video is 60 minutes. The frame
rate is 25 frames per second. The mean bit rate of the video
is 0.87 Mbps, namely Bi’=0.87Mbps(Ni1). The peak
bit rate is 3.2 Mbps. From expression (2), the size
Pi(Ni1) of the prefetched data is 3.9MB and from (3),

246

the size Pi’ (Ni1) of the allocated buffer at the client is
15.7MB. Assume that the limit ti (Ni1) of start-up
delay is 3 seconds at the client. The request arrival follows
an Average process with rate r requests per minute. The
frequency of access to each object is based on a Zipf
distribution with parameter 0.271, and the videos in the disk
are organized according to the access frequency of each
video. We configure experimental server with B=1Gbps and
M=1/2/3/4GB. We compare the performance of BSBS-VBR,
Prefetching (Pi is prefetched into the client buffer at an
average rate Bi’) and FCFS by experimental results.

First, M is fixed 2GB. Experiments are executed by
changing the value (20, 40, 60, 80, 100) of arrival rates r.
Fig. 2 shows simultaneous clients sustained by each scheme.
The result shows that the BSBS-VBR algorithm can serve
the most displays and achieves better performance.

Secondly, r is fixed 50 requests per minute.
Experiments are executed by changing the value (1, 2, 3, 4)
of M. Fig. 3 shows simultaneous clients sustained by each
scheme for different M. The result shows that the
BSBS-VBR can serve more displays and the number of
displays is increasing with the memory increase. So,
adaptive ability of the BSBS-VBR is relatively better for
different rate of the memory and disk bandwidth resources.

4. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

In this paper, we present an effective smoothing algorithm,
which guarantees that neither starvation nor overflow occurs
to transmit a VBR-encoded video at an average rate by
prefetching some data and allocating the buffer for these
data at the client. This algorithm can reduce the burst
requirement of VBR-stream, simplify resources allocation
methods of server and network and satisfy the start-up delay
limit at the client. This algorithm also allocates resources for
each request according to the available cache and disk
bandwidth, and adjusts buffer size at run-time according to
the current request distribution and available resources
dynamically. It can reduce more consumption of disk
bandwidth and improve the efficiency of the resources by
using interval caching.

In our next research, we will add support of VCR
functions to BSBS-VBR algorithm, and extend BSBS-VBR
to FGS (Fine granularity scalability) media.

5. REFERENCES

[1] Chun Wai Kong, Jack Y. B. Lee. “Slice-and-Patch -- An
Algorithm to Support VBR Video Streaming in a Multicast-based
Video-on-Demand System”, J. Inf. Sci. Eng. 19(3): 517-530(2003).
[2] Anastasiadis S V, Sevcik K C, Stumm M. “Server-based
smoothing of variable bit-rate streams”, In: Proc. ACM Multimedia,
Oct.2001.
[3] Shin-Hung Chang, Ray-I Chang, Jan-Ming Ho, and Yen-Jen
Oyang. “An Optimal Cache Algorithm for Streaming VBR Video
over a Heterogeneous Network”, Computer Communications
28(16): 1852-1861 (2005).
[4] D. Makaroff, J. Coutu, and F. Liu. “Disk Performance and VBR
Admission Control for Media Servers”, DMS '2005, Banff, Canada,
pp. 224-227, Sep. 2005.
[5] Lee K, Yeom H Y. “An effective admission control mechanism
for variable-bit-rate video streams”, Multimedia Systems, 1999,
7(4): 305 311.
[6] S.V. Anastasiadis, K.C. Sevcik, and M. Stumm. “Shared-Buffer
Smoothing of Variable Bit-Rate Streams”, Performance Evaluation,
vol. 59,no. 1, pp. 47-72, Jan. 2005.
[7] B. Sonah, Mabo Robert. “Ito: Considering video characteristics
for improved cache performance in VOD systems”, SAC 2001:
429-433.
[8] Nabil J. Sarhan and Chita R. Das. “Analysis of Caching
Performance in Multimedia Servers”, In the Proceedings of the 8th
International Conference on Internet and Multimedia Systems and
Applications, pp. 288-293, Aug. 2004.
[9] M. H. Kabir, Eric G. Manning, and Gholamali C. Shoja.
“Scalable Multimedia Streaming Model and Transmission Scheme
for VBR-Encoded Videos”, in Proc. of 16th IASTED Int. Conf. on
Parallel and Distributed Computing and Systems (PDCS),
Cambridge, USA, pp.867-872, Nov. 2004.
[10] J. Fernández, J. Carretero, F. Garcia, J.. Pérez, A. Calderón.
“Enhancing Multimedia Caching Algorithm Performance Through
New Interval Definition Strategies”, 36th Annual Simulation
Symposium 2003.
[11] W. Shi, S. Ghandeharizadeh. “Controlled Buffer Sharing in
Continuous Media Servers”, Multimedia Tools Appl. 23(2):
131-159 (2004).
[12] Video trace of MPEG-4 encoded Robin Hood,
http://www-tkn.ee.tu-berlin.de/research/trace/ltvt.html.

Fig. 3 Comparison of simultaneous clients for different M

Fig. 2 Comparison of simultaneous clients for different r

247

