
DYNAMIC MEMORY ALLOCATION AND DATA SHARING SCHEDULE IN MEDIA
SERVER

Kaihui Li1,2, Yuanhai Zhang1,2, Jin Xu1,2, Changqiao Xu1,2

1 Institute of Software, The Chinese Academy of Sciences, Beijing, P.R. CHINA 100080
2 Graduate University of the Chinese Academy of Sciences, Beijing, P.R. CHINA 100039

kaihui01@ios.cn, yuanhai02@ios.cn, xujin03@ios.cn, changqiao@ios.cn

Abstract—Most of the existing buffer allocation and sharing
schemes can not make full use of the system resources while
being implemented independently. Here, based on analysis
of the existing schemes, we propose a new algorithm,
Balanced Buffer Sharing of Limited Resource (BBSLR),
which allocates resources for each request according to the
available cache and disk bandwidth, and adjusts buffer size
according to the current request distribution and available
resources dynamically. It does a good job of managing
resources to maximize the number of simultaneous clients
and enhance start-up delay. With BBSLR, the resources
consumption will be balanced by rational allocation of the
available resources, the average start-up delay will be
reduced by caching the data at start and more clients will be
served consequently. These conclusions are proved by
comparing with several existing methods experimentally.

1. INTRODUCTION

The growing popularity of streaming media places an
increasing strain on both network and server resources.
Streaming media requires large amounts of network and
disk bandwidth to successfully transmit streams from a
server or proxy to the client. The most common solution is
to simply purchase more resources. However, it doesn’t
make sense always for technical or economic reasons. So
some algorithms proposed can make full use of the server
resources by substituting one set of resources for another.
These algorithms include static buffer allocation scheme [1],
dynamic buffer allocation scheme [2], buffer sharing,
prefetching [3], batching [4], etc. Each of them is explicitly
designed for a particular problem and is not generalized to
generic resources types. On the other hand, these algorithms
never take the distribution of the requests into consideration
while allocating resources.

In this paper, we propose a dynamic buffer allocation
and sharing schedule based on these existing solutions. For
the server configured with nowadays probability resources,
this algorithm allocates resources for a new request
according to available cache and disk bandwidth and adjusts
buffer at run-time according to current request distributing
and available resources dynamically. With this algorithm,
the resources consumption will be more balanced and the

video server will simultaneously serve more clients without
any additional resources.

2. RELATED WORK

The static buffer allocation scheme determines the minimum
buffer size based on the assumption that the system is in the
fully loaded state. It can not use memory efficiently by
allocating a larger buffer than necessary when the system is
not in the fully loaded state [2]. The dynamic buffer
allocation scheme, that mends it by computing the buffer
size at run-time, is more adaptive to these applications
similar to VOD.

Buffer sharing uses a single disk stream to serve
multiple clients by caching data in memory. It can reduce
disk stream requirement, enhance system performance and
reduce start-up delay because of the faster read speed of the
memory also [5]. Buffer sharing methods include frequency
caching [6], fixed-sized caching [7] and interval caching (IC)
[8] and so on. IC method is relatively effective [9]. It works
as follows: if two client requests for the same file arrive
close together in time, the data delivered to the first client
can be retained in memory until it is delivered to the second
client. In this method, we need to determine the size of
interval buffer and the times of allocating buffer and
remaining data. Typical algorithms include Generalized
Interval Caching (GIC) [8], Non Preemptive Interval
Caching(NIC), Controlled Buffer Sharing (CBS) [10], and
Multi Policy Integrated Cache MUPIC [11] and so on.
This section mainly introduces CBS and MUPIC.

CBS [10] presents a concept of distance threshold
(denoted dt), and defines $$ MI (when $$ MI is an
integer), $$ MI or $$ MI (when $$ MI is not an
integer) as the optimal dt. M$ and I$ separately denote the
price of memory and disk bandwidth needed by a
independent request. Distance threshold dt is the number of
buffer blocks which can be used to cache the sharing data. If
the needed buffer blocks between two adjacent displays
referencing the same video exceed dt, they are allowed to
neither pin their intermediate data pages nor share one disk
stream using memory. This algorithm computes the amount
of required buffer and disk bandwidth according to the input
parameters of request arrival rate, access distribution, dt and
so on at system design time, then configures the system with

721-4244-1017-7/07/$25.00 ©2007 IEEE ICME 2007

the computed results. At system run time, the data will not
be cached in the buffer until the new request arrives, whose
distance does not exceed dt with the former request. So,
there will be a transition state where the new request would
need to be served with the disk while the corresponding
interval is being cached.

If we apply CBS to the practice, it may result in that the
requirements of the resources computed can not be satisfied
for technical or other reasons. On the other hand, since it
does not cache the data used by the former request in the
buffer before the new request which can share the data with
the former one arrives, the new request needs to be served
by a new disk stream for an interval time. Relative to cache
the data when serving the former request, this way needs to
expend more resource (disk bandwidth) and can not also
lessen start-up delay.

MUPIC [11] mainly depends on comparison of the ratio
of cache usage (Mi/M) and the ratio of disk bandwidth usage

Bi/B to determine whether or not cache data in the
buffer. Here, M denotes the size of the whole memory. Mi
denotes the size of the needed buffer when a new request is
served with the buffer. B and Bi separately denote the
bandwidth of the whole disk and the required bandwidth of
each stream served by a disk stream. When the ratio of
cache (disk bandwidth) usage is lower than the ratio of disk
bandwidth (cache) usage, it will use the buffer (disk
bandwidth) to serve requests. When the two ratios are equal,
it does not matter if the stream uses disk bandwidth or
buffer. Similar to CBS, MUPIC does not cache the data in
the buffer until new request needs to be served with the
buffer.

Although MUPIC can decrease the consumption rate of
single resource, but it is possible that one resource has
reached bottleneck while another has many available since
the rate of the whole resources usage is not considered. If
the latter request needs to be served by the bottleneck
resource, MUPIC needs to replace resource first. At this
time, MUPIC needs to reallocate the resources before
system steps forward and will lead to more start-up delay.

3. BBSLR ALGORITHM

Balanced Buffer Sharing of Limited Resources (BBSLR)
algorithm allocates the size dm of buffer for the initial
request. The value of dm is dynamically determined based on
available cache, disk bandwidth and bandwidth required by
the requested stream. The size of the allocated buffer is
dynamically adjusted at run-time according to the current
request distributing and available resources.

For the sake of obtaining the mathematical
representation of the problem, we give some assumptions:
1) the stream will have a constant bit rate.
2) the requirements of disk bandwidth and cache of each

request are fixed.
3) the stream served by using disk stream will demand

some buffer space. The stream served by using buffer

will only demand relevant buffer space. The streams
will be only served by using disk and/or buffer.
Table 1 gives the variables used in BBSLR algorithm.
After media server accepts a request, each individually

served display needs to consume disk bandwidth of one
stream and some memory space. For instance, if the ith
request is served individually by a disk stream, Mi and Bi
used by it will be separately Mi’ and Bi’. According to table
1, the resources used by n users can not exceed the total
resources of server [11]. These are shown in (1) and (2).

MM
n

i
i

1

 (1)

BB
n

i
i

1

 (2)

Here, dm is a distance threshold [10]. It limits the size of
the needed sharing buffer between two adjacent displays
referencing the same stream. If the needed buffer size
between two adjacent displays exceeds dm, they are allowed
to neither cache their intermediate data nor share one disk
stream by using memory. The requirements of the buffer
and disk bandwidth are affected by the value of dm. In the
practical system, choosing optimal dm can make the best of
the existing resources. The value of T denotes size of the
interval cache finally formed by these requests sharing one
disk stream. The value of dm is calculated by using (3) in
this algorithm:

)1(

)0)(2,(

)0(

'''
'

'

''''
'

'

ni

BorBB
n

MMMMin

BandBBM
B
B

d

i

i
i

m (3)

The computation of the buffer size to be allocated
considers both available resources and disk bandwidth
required by the requested stream in (3), so that it can keep
balance of cache and disk bandwidth consumptions.

Table 1 The variables used in BBSLR

Variable Description

M Size of the whole memory (byte)
B Size of the whole disk bandwidth (bps)

M’ Size of the currently available memory (byte)
B’ Size of the currently available disk bandwidth (bps)
Mi Size of the cache used by the ith request (byte)
Bi Size of the bandwidth used by the ith request (bps)

Mi’
Size of the cache required by the ith request served
by disk stream (byte)

Bi’
Size of the Bandwidth required by the ith request
served by disk stream (bps)

n Number of user requests in service at some time

dm Limit of interval cache size between two adjacent
displays referencing the same video (byte)

T Size of whole interval cache of a certain video(byte)

73

Request management process of BBSLR is described in
the following.
1) If the video A is requested by the ith request and the

requested data is not in the buffer, the bandwidth Bi’
and the buffer dm (dm, equal to the bigger of Mi’ and the
result calculated by (3)) (T=dm) are allocated for the
request i. Then the video A is read from disk by Bi’, sent
to the user and simultaneously cached in dm.

2) If the video A is requested by the ith request and the
requested data is in the buffer, this request will be
served directly from the buffer. Then perform 3).

3) If the ith request can be served from the buffer,
assuming that t is the interval time between this request
and the former request for video A. A new dm’ is
calculated by (3) and compared with (dm-t*Bi’). If dm’
is bigger, the size T of the buffer is grown to the length
of T’, where T’=T+dm’-(dm-t*Bi’). Otherwise, keeping T
fixed and above procedure repeats until no new request
arrives.

4) If no new request for the video A arrives in the period
of the buffer remained by T or T’, superfluous buffer
space is reclaimed at the end of T or T’ and only part of
the buffer is left to provide service for these requests
arriving in this period.

5) When new request arrives, if there are not enough
available resources and enough resources can not be
replaced (i.e., (1) or (2) is not satisfied), the new request
is rejected.

6) If the service terminates, the resources of buffer and
disk bandwidth are reclaimed.

3.1. The Buffer Allocation and Reclamation Algorithms

Buffer allocation: when a new request arrives, dm is
calculated by (3). If this request is served by disk stream, the
buffer Max(dm,Mi’) is allocated to this request. If the request
is served from the buffer, we compare the value of dm with
the size of the buffer, which is remaining after we have
allocated and some of them have formed interval, then set
the bigger as the size of new available buffer. If available
cache is not enough, the buffer reclamation algorithm is
called.

Buffer reclamation:
1) when the service is over, the idle buffer resource is

reclaimed.
2) if no new request for the video A arrives in the period of

the buffer remained by T or T’, superfluous buffer space
is reclaimed at the end of T or T’ and only part of the
buffer is left to provide service for these requests
arriving in this period.

3) if available cache is not enough when new request
arrives, buffer reclamation operations as follows: (a) If
there is the buffer that has been allocated and interval
cache is not formed in it yet, we directly reclaim it. (b)
Otherwise, if interval cache has been formed in Mi,
there is no adjacent request after Mi and the rate of

buffer Mi to bandwidth Bi’ is the largest, then the buffer
Mi is reclaimed, and these requests served by Mi will be
served by disk bandwidth.

3.2. The Disk Bandwidth Allocation and Reclamation
Algorithms

Disk bandwidth allocation and reclamation:
1) when available disk bandwidth is enough, the required

bandwidth is allocated to the request.
2) when available disk resource is not enough, the disk

bandwidth, which is serving the request j which has the
least interval time from the former request and is served
by disk stream, will be reclaimed and request j will be
served from the buffer.

3) when the service is over, the corresponding disk
bandwidth is reclaimed.

4. EVALUATION OF BBSLR

These experiments are based on network architecture that
includes a video server and many users, and that the users
can directly communicate with the server by enough
network bandwidth. The server contains 100 constant bit
rate videos, Bi’=2Mbps(ni1), Mi’=1MB(ni1). The
length of each video is 90 minutes. For experimental
purposes, we assume that the request arrival follows an
Average process with rate r. The frequency of access to
each object is based on a Zipf distribution with parameter
0.271, and the videos in the disk are organized according to
the access frequency of each video. We configure
experimental server with B=1Gbps and M=1/2/3/4GB. We
compare the performance of different buffer sharing
techniques (including BBSLR, CBS, MUPIC and FCFS) by
experimental results. Here, we use a round-based technique
similar to the one described in [10].

First, M is fixed 2GB. Experiments are executed by
changing the value (20, 40, 60, 80, 100) of arrival rates r.
Fig. 1 shows simultaneous clients sustained by each scheme.
The result shows that the BBSLR algorithm achieves good
performance and the result accords with that of MUPIC.

Secondly, r is fixed 50 requests per minute.
Experiments are executed by changing the value (1, 2, 3, 4)
of M. Because system configuration will be adjusted with
current market in reality, we compare adaptive abilities of
these schemes for two resources different rate by changing
the size of one resource. Fig. 2 shows simultaneous clients
sustained by each scheme for different M. The result shows
that adaptive ability of the BBSLR algorithm is relatively
better.

At last, we test response time of user requests, because
one of the purposes of buffer sharing is to reduce start-up
delay of users properly by quick response of memory.
Assume that response time is Ta seconds directly served by
disk stream and Ta*10-3 seconds served by buffer. Fig. 3 and
Fig. 4 show respectively average start-up delay of the

74

requests for different r and different M. Due to caching the
data in the buffer at the start and providing service for the
latter requests directly, BBSLR algorithm can improve the
average start-up delay.

Fig. 1 Comparison of simultaneous clients for different r

Fig. 2 Comparison of simultaneous clients for different M

Fig. 3 Comparison of average start-up delay for different r

Fig. 4 Comparison of average start-up delay for different M

5. CONCLUSIONS

In this paper, based on the existing buffer allocation and
sharing schemes, we propose BBSLR algorithm. Being
compared with existing algorithms, the advantages of
BBSLR algorithm lie in: (1) the resources can be utilized
rationally because this algorithm dynamically allocates
resources based on available cache and disk bandwidth and
dynamically adjusts buffer according to current request
distributing and available resources; (2) it makes the two
resources to consume evenly by allocating the resources
according to the ratio of available cache to disk bandwidth;
(3) caching the data in the buffer at the start can not only
reduce the average start-up delay, but also lessen the
requirement of disk bandwidth.

In our next research, we will add support of VCR
functions to BBSLR algorithm, and extend BBSLR to
variable bit rate (VBR) media.

6. REFERENCES

[1] T.-PJ To and B. Hamidzadeh. “Dynamic real-time scheduling
strategies for interactive continuous media servers”, Multimedia
Systems, ACM, 7(2):91-106, 1999.
[2]Sang Ho Lee, Kyu-Young Whang, Yang-Sae Moon, Il-Yeol
Song: “Dynamic Buffer Allocation in Video-on-Demand Systems”,
SIGMOD Conference 2001.
[3]R. Shah, P. J. Varman, J. S. Vitter. “Online algorithms for
prefetching and caching on parallel disks”, SPAA 2004: 255-264.
[4]Ma H, Shin K G. “Multicast Video-on-Demand Services”,
ACM Computer Communication[J]. Review, ACM Press, Volume
32 , Issue 1, pp.31-34, January 2002.
[5]M. Bradshaw, J. Kurose, P. Shenoy, D. Towsley. “Online
scheduling in modular multimedia systems with stream reuse”,
NOSSDAV 2005: 195-200.
[6]H. Vin. “Video compresion. Course CS384M: Multimedia
Systems”, University of Texas, 1996.
[7]E. Bommaiah, K. Guo, M. Hofmann, and S. Paul. “Design and
implementation of a caching system for streaming media over the
internet”, In Proceedings of IEEE Real Time Technology and
Applications Symposium, May 2000.
[8]A. Dan and D. Sitaram. “A Generalized Interval Caching Policy
for Mixed Interactive and Long Video Workloads”, In Proceedings
of Multimedia Computing and Networking Conference (MMCN),
pages 344-351, January 1996.
[9] Nabil J. Sarhan and Chita R. Das. “Analysis of Caching
Performance in Multimedia Servers”, In the Proceedings of the 8th
International Conference on Internet and Multimedia Systems and
Applications, pages 288-293, August 2004.
[10]W. Shi, S. Ghandeharizadeh. “Controlled Buffer Sharing in
Continuous Media Servers”, Multimedia Tools Appl. 23(2):
131-159 (2004).
[11]J. Fernández, J. Carretero, F. Garcia, J.. Pérez, A. Calderón.
“Enhancing Multimedia Caching Algorithm Performance Through
New Interval Definition Strategies”, 36th Annual Simulation
Symposium 2003.

75

