
A MUSICAL AUDIO SEARCH METHOD BASED ON SELF-SIMILARITY FEATURES

Tomonori Izumitani and Kunio Kashino

NTT Communication Science Laboratories
3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, Japan

ABSTRACT

We propose a method for musical audio search based on sig-
nal matching. A major problem in the signal matching ap-
proach to musical audio search has been key variation; if the
key of a query signal is significantly different from the one
in the stored database, the search will fail. To cope with this
problem, our method newly employs self-similarity as the fea-
ture for signal matching. The self-similarity proposed here is
similarity of the power spectrum defined between two time
points within an audio signal. We show that the method in-
creases the robustness of musical audio search with respect
to key variation. In our experimentation, for example, the
proposed method yields precision and recall rates of around
0.75 even when the pitches in queries and stored signals differ
from each other by seven semitones, whereas a conventional
signal matching method does not produce meaningful results
in such a case.

1. INTRODUCTION

Musical audio search, or finding pieces of audio signal from
a database, has become important with the rapid diffusion of
portable music players and multi-function cell phones. Among
various methods for musical audio search, the approach based
on signal similarity is often referred to as audio fingerprint-
ing. Most audio fingerprinting methods have been based on a
set of local characteristics derived from sound waveforms [1],
such as the short-time power spectrum and Mel frequency
cepstral coefficients.

While the audio fingerprinting systems have been success-
fully used in various practical applications, we have been in-
terested in extending the task to searching for not only the
same recordings as a query but also the same titles, which
may be played by other players, with other instruments, with
different arrangements, in different tempi, or in other keys.
Obviously, local characteristics of sound waves used by au-
dio fingerprinting systems may be severely affected by these
variations. As an initial study, this paper focuses on a method
to cope with key variations.

An approach addressing the key variation problem is to
use chroma-based features. For example, Nagano et al. pro-
posed PBFV (polyphonic binary feature vector) [2] for key-
invariant music retrieval. Goto also used a chroma-based fea-
ture to detect repetition within a musical piece in his chorus-

section detecting system [3]. Müller et al. used chroma-based
features to unify different timbres played by various play-
ers [4].

However, when we consider musical audio search for a
large database, finding key-converted music remains a diffi-
cult task. For example, when using a chroma-based feature,
the computational cost can be nonnegligible because twelve
matching processes, one for each is a semitone in an octave,
are required for pitch-invariant search. In addition, chroma-
based features are derived from individual frequency compo-
nents, and therefore, they can be affected by overtone char-
acteristics of the notes, and sometimes even by tuning fre-
quency.

The main idea proposed here is to use a pitch-invariant
feature. In our method, a self-similarity vector, whose ele-
ments are defined by spectral similarities to different lags, is
generated at each time point. Then, we introduce an unequally-
sized mesh to extract features from the self-similarity vectors
to deal with tempo variations.

Self-similarity in music has already been investigated by
many researchers, especially in the context of musical struc-
ture analysis. For example, Foote used self-similarity of the
spectral configuration as a visualization of music [5] as well
as a means of audio segmentation tasks [6]. Self-similarity
representation reflects the structure of the relationship between
various time points in a comparatively long time range and it
does not include features dependent on pitch. We apply this
property to pitch-invariant music search tasks.

2. METHODS

2.1. Audio Search Framework

We consider the following musical audio search system. Each
database entry is constructed from a musical audio signal and
a query is a short piece of musical audio signal. The task is to
search the database to find the same parts of music as a given
query.

Figure 1 shows a basic idea of the search. Most existing
audio fingerprinting system represent features as a sequence
of vectors or symbols generated by frequency analysis. These
features are suitable for finding the same recordings as given
queries. When a musical piece is played in different keys,
however, the features often change dramatically, and it is not

681-4244-1017-7/07/$25.00 ©2007 IEEE ICME 2007

Fig. 1. A simple audio search system.

Fig. 2. Extracting features from a spectrogram of musical
audio data.

straightforward to design a criterion for the search to allow
for this difference.

2.2. Calculating self-similarity features

We assume that the relationship between two time points within
a musical sound is invariant even if the music is played in an-
other key. Thus, as shown in Fig. 2, we extract features, both
from the stored and query signals, with the following three-
step process.

In the first step, the spectral power vectors are calculated
using a bandpass filter bank [Fig. 2(a)]. The filtered signals
are divided into frames and the powers within each frame are

averaged. A power spectrum at time point i, which means the
i-th frame, is represented by a vector pi.

In the second step, self-similarity vectors si are calculated
from spectral power vectors. Each of the vectors si is gener-
ated by calculating the similarity between pi and each subse-
quent N frames pj (j = i+1, i+2, ..., i + N) [Fig. 2(b)].

In this study, we adopt the radial basis function (RBF),
which reflects the Euclidean distance between two vectors,
for the similarity measure:

sij = Sim(pi,pj) = exp
(−C|pi − pj |2

)
, (1)

where C is a constant.
Note that some elements of N -dimensional vector si are

not obtained at the tail frames where the numbers of subse-
quent frames are less than N . Especially for a short query
having Lq (≤ N) frames, only the first Lq − k elements are
available for k-th frame.

In the third step, matching feature vectors Fi are extracted.
As in Fig. 2(c), we firstly apply a triangular window for calcu-
lating a matching feature. We then divide the triangular region
into partitions using a mesh. The elements of self-similarity
vectors (s..) within each partition are averaged, and the aver-
aged value is used as a feature vector element. In the figure,
f1, f2, ..., and fn indicate feature values and these values con-
stitute a feature vector Fi. This averaging process reduces the
number of dimensions of matching features.

We particularly use a mesh that contains unequally sized
rectangular partitions; the upper left partitions are small and
the lower or right ones are large. This is to deal with various
tempi. When a query music is played in a different tempo
from the corresponding music in the database, the time dif-
ference between the corresponding time frames become large
as the time lags increase. We use larger averaging regions in
lower or right hand side elements to absorb this effect.

The length of a side of the partition, Lp(k), that includes
k-th frame or the k-th element in the upper left, is defined as

Lp(k) =
⌊ k

M

⌋
+ 1, (2)

where k denotes the k-th frame in the horizontal direction
or the k-th element in the vertical direction. The value of
k represents the distance from the upper-left position of the
triangular region. M is a constant that controls the ratio of
the size between the upper-left partition and the lower or right
ones.

2.3. Matching process

The feature matching can be performed as in the exisiting au-
dio fingerprinting systems. For example, hash functions or
feature histograms may be used to accelerate the search [1].
For simplicity, here we describe a basic implementation based
on the exhaustive matching with a one-by-one shift of a query
feature vector (Fig. 1). The matching score of the system is
based on the Euclidean distance between feature vectors from

69

query Fq and that from database Fd. The Euclidean dis-
tances for all frames within the database are calculated and
every frame that has a minimum distance value within a cer-
tain range around the frame (±200 frames are used in this
study) is selected as matched-frame candidates. To define a
similarity measure, we represent the distance value at the i-th
frame in the database as zi and the set of candidate frames as
D. Then we define the matching score Si using the average
zm and standard deviation zd of zj , (j ∈ D) as follows:

Si =

{
max

(
− (zi−zm)

zd
, 0

)
, i ∈ D,

0, otherwise.
(3)

The system lists all frames in the database that yield Si >
Θ , where Θ is a threshold parameter.

3. EXPERIMENTS

We evaluated robustness of the proposed method in a music
signal retrieval task with the key and tempo variations.

The objective of the test was to evaluate the robustness in a
systematic way. To this end, we used performances controlled
by MIDI data. That is, we used 61 pieces of MIDI data in the
RWC Music Database (RWC-MDB-C-2001) [7] to generate
queries in various keys and tempi and a database.

First, we generated audio signals of the database by play-
ing all 61 MIDI files using WinampTM 1 and saving the files
in the WAV format. Next, we randomly selected short seg-
ments, one from each of the pieces, and used them as a test set
of queries. By modifying the MIDI files, we prepared 35 vari-
ations for each query, namely, seven key variations where the
keys were shifted ±0, ±1, ±4, ±7 semitones from the origi-
nal and five tempo variations where the interval between beats
was shortened or extended to be 90%, 95%, 100%, 105%, and
110% of the original. The length of each query was 12 sec-
onds.

Each audio signal was resampled at the sampling rate of
11,025 Hz and a spectrogram was generated by a filter bank
consisting of 120 second-order-IIR bandpass filters. Central
frequencies of the bandpass filters were set to have half semi-
tone intervals as follows:

Fc(i) = 100 (Hz)× 2
(i−1)

24 , i = 1, 2, ..., 120. (4)

Powers of each signal were averaged at every time frame
from 1,024 samples, represented in a log scale, and normal-
ized to be |pi| = 1. Some parameter values were empirically
chosen; the similarity parameter C was 30, and the mesh pa-
rameter M was 8.

The correct locations of each query within the database
were determined manually for the evaluation. In total, 82 lo-
cations in the database were specified as the correct locations
for 61 queries. For 18 queries, each query had more than one
location within a musical piece. This is because some musical
passages were repeated in the same musical pieces.

1http://www.winamp.com

Table 1. Precision “Prec.” and recall “Rec.” rates when
the matching score threshold Θ was fixed for all query varia-
tions. Queries are played (A) at the original tempo and (B) at
a faster tempo (beat interval is 95 % of the original). Values
in parenthesis denote baselines.

(A) The original tempo.
−7 −4 −1 ±0 +1 +4 +7

Prec. 0.92 0.83 0.86 0.82 0.89 0.89 0.88
(0.0) (0.33) (0.94) (0.86) (0.89) (0.50) (0.50)

Rec. 0.41 0.60 0.88 0.90 0.82 0.78 0.68
(0.0) (0.01) (0.88) (0.95) (0.88) (0.02) (0.01)

(B) Played at a faster tempo (beat interval: 95 %).
−7 −4 −1 ±0 +1 +4 +7

Prec. 0.84 0.86 0.89 0.86 0.89 0.92 0.88
(0.0) (0.0) (0.90) (0.87) (0.89) (1.00) (1.00)

Rec. 0.26 0.38 0.76 0.82 0.72 0.55 0.45
(0.0) (0.0) (0.57) (0.83) (0.59) (0.02) (0.01)

The performance was measured in terms of the precision
and the recall rates. The precision is defined as the ratio of
correctly identified locations to the total number of locations
found by the system, and the recall as the ratio of correctly
identified locations to the total number of correct locations.

Figure 3 shows the precision-recall curves using queries
played at (A) the original tempo, (B) a faster tempo with 95%
beat intervals, and (C) with 90% beat intervals. These curves
were obtained by changing the matching score threshold Θ.
The results are from queries played in various keys, namely,
the original pitch and pitches shifted −7, −4, −1, ±0 (the
original), +1, +4, and +7 semitones from the original.

When a query was played at the original tempo or with
95% beat intervals, the method efficiently worked. With the
original tempo, precision and recall rates were simultaneously
greater than 0.75 even in the case of the seven-semitones higher
keys. When the tempo was altered to 90% beat interval, the
accuracy decreased especially with large key alterations.

When queries were played at slower tempi, where beat in-
tervals were 105% and 110%, the tendency seen in the precision-
recall curves was almost the same as for faster tempi, 95% and
90%, respectively.

Table 1 shows precision and recall rates when the match-
ing score threshold Θ was fixed for all query variations. Val-
ues in parenthesis denote baselines calculated using spectrum-
based features; namely, pi was used instead of Fi. For the
baseline test, the dimension of each pi was adjusted to 20 by
averaging the values within six neighboring frequency bins.
Since there were 128 time frames in a query, the number of
dimensions of the matching feature vector was 2,560 in the
baseline method. The threshold value Θ was chosen so that
the precision value averaged over the 3 conditions (key shifts
−1, ±0, +1; 100% beat interval) equals the recall value av-
eraged over them; it was 2.9 for the proposed method and 3.8

70

(A) Played in the original tempo

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: -7

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: -4

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: -1

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: ± 0

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: +1

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: +4

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: +7

Precision

R
e
c
a
l
l

(B) Played at a faster tempo (beat interval: 95%)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: -7

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: -4

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: -1

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: ± 0

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: +1

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: +4

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: +7

Precision

R
e
c
a
l
l

(C) Played at a faster tempo (beat interval: 90%)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: -7

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: -4

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: -1

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: ± 0

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: +1

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: +4

Precision

R
e
c
a
l
l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Key: +7

Precision

R
e
c
a
l
l

Fig. 3. Precision-recall curves using queries played in various keys and tempi. (A) played in the original tempo, (B) played
faster (beat interval: 95%), (C) played faster (beat interval: 90%). Columns of the charts show results from queries with various
keys, −7, −4, −1, ±0(the original key), +1, +4, and +7 semitones shifted from the original, left to right in order.

for the baseline method.

We can see that the recall rates from the baseline method
are very low when the queries are played in keys ±4 and ±7
semitones shifted from the original. This means that it is dif-
ficult for the baseline method to retrieve the desired signals in
such cases. Thus, it is shown that the proposed method out-
performs the baseline method in terms of robustness to key
variations.

4. CONCLUSION

We have proposed a musical signal search method. The method
employs self-similarity features to deal with audio signals played
in keys significantly different from the ones in the database.
Experimental results using systematically generated musical
audio signals indicate that the proposed method achieves sig-
nificantly high accuracy, around the break-even rate of 0.75,
even when the pitches in queries and stored signals differ from
each other by seven semitones. We anticipate that future work
will include evaluation with acoustically played musical sig-
nals and extension to the other musical variations, such as
tempo and arrangement.

5. REFERENCES

[1] K. Kashino, T. Kurozumi, and H. Murase, “A quick
search method for audio and video signals based on his-
togram pruning,” IEEE Trans. Multimedia, vol. 5, no. 3,
pp. 348–357, 2003.

[2] H. Nagano, K. Kashino, and H. Murase, “Fast music re-
trieval using polyphonic binary feature vectors,” in Proc.
of ICME, pp. 101–104, 2002.

[3] M. Goto, “A chorus-section detecting method for musical
audio signals,” in Proc. of ICASSP, pp. 437–440, 2003.

[4] M. Müller, F. Kurth, and M. Clausen, “Multiple funda-
mental frequency estimation based on harmonicity and
spectral smoothness,” in Proc. of ISMIR, pp. 11–18, 2005.

[5] J. Foote, “Visualizing music and audio using self-
similarity,” in Proc. of ACM Multimedia, pp. 77–80,
1999.

[6] J. Foote, “Automatic audio segmentation using a measure
of audio novelty,” in Proc. of ICME, pp. 452–455, 2000.

[7] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka,
“RWC music database: Popular, classical, and jazz music
databases,” in Proc. of ISMIR, pp. 287–288, 2002.

71

