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No-Reference Quality Assessment of JPEG Images
via a Quality Relevance Map
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Abstract—This letter presents a no-reference quality assessment
algorithm for JPEG compressed images (NJQA). Ourmethod does
not specifically aim to measure blockiness. Instead, quality is es-
timated by first counting the number of zero-valued DCT coeffi-
cients within each block, and then using a map, which we call the
quality relevance map, to weight these counts. The quality relevance
map for an image is amap that indicates which blocks are naturally
uniform (or near-uniform) vs. which blocks have been made uni-
form (or near-uniform) via JPEG compression. Testing on various
image-quality databases demonstrates that NJQA is either com-
petitive with or outperforms modern competing methods on JPEG
images.

Index Terms—Discrete Cosine Transform (DCT), JPEG com-
pressed images, No Reference Image Quality Assessment.

I. INTRODUCTION

A LGORITHMS for image quality assessment (IQA) seek
to predict the qualities of images in a manner that is con-

sistent with quality ratings provided by human subjects. Of re-
cent interest is the topic of no-reference IQA (NR IQA), in
which the assessment is performed without the aid of the orig-
inal, reference image. In this letter, we specifically address NR
IQA of images which have undergone JPEG compression.
Over the past two decades, numerous algorithms have been

proposed for NR IQA of JPEG images. A characteristic dis-
tortion in JPEG images is the presence of blocking artifacts;
accordingly, the vast majority of NR IQA algorithms attempt
to measure blockiness [1]–[16]. One common approach es-
timates the visibility of blocking artifacts based on block
boundary edge-strength measurements (e.g.,[1]–[12]). Various
transforms, such as the Discrete Cosine Transform (DCT) and
Discrete Fourier Transform (DFT), are also commonly used for
quantifying blockiness (e.g.,[13]–[16]).
In [1], Wu and Yuen estimated quality by measuring impair-

ments at the block edges. Bailey et al. [4] measured blocking
artifacts by comparingmeasured edge activity with an estimated
blockiness-free activity. Pan et al. [5] estimated blockiness
based on directional information measured for edges. Liu
and Heynderickx [8] computed blockiness by weighting the
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local pixel-based distortion by its local visibility estimated
via a model of visual masking. Wang et al. [9] presented an
NR measure of blockiness which models blocky images as
a non-blocky image corrupted by a pure blocky signal; they
compute the quality of the image based on the energy of the
blocky signal. Pan et al.[10] proposed a method which takes
into account both the blockiness and the flatness to measure
blocking artifacts. Perra et al. [11] exploited properties of the
Sobel operator to generate a NR blockiness index that sepa-
rately quantifies the luminance variation of block boundary
pixels and the remaining pixels. Zhang [12] et al. presented a
NR blockiness measure which calculates the image’s luminance
gradient matrix by using the Sobel operator. This matrix was
used with perceptual adjustments (luminance adaptation and
texture masking) to estimate the severity of blocking artifacts
and the annoyance of large flat regions.
Blockiness has also been estimated via the DCT and other

transforms. In [13], Bovik and Liu presented an NR measure of
blockiness which operates in the DCT domain; blocking arti-
facts were first located via detection of 2D step functions, and
then a human-vision-based measurement of blocking impair-
ment was employed. Park et al. [14] presented an NR measure
for blocking artifacts by modeling abrupt changes between ad-
jacent blocks in both the pixel domain and the DCT domain.
Tan and Ghanbari [15] applied a 2D DFT to small blocks seg-
mented from the gradient image; a blockiness measure was de-
veloped by examining both the amplitude information and the
phase information of the harmonics. Chen and Bloom [16] pre-
sented an NR DFT-based measure of blockiness. The DFT was
employed to derive separate measures of horizontal and vertical
blockiness, and then the overall blockiness was estimated via a
combination of these two directional measures.
In this letter, we propose a NR IQA algorithm for JPEG im-

ages that does not specifically aim to measure blockiness. In-
stead, quality is estimated via a hybrid approach that uses both
the DFT andDCT to estimate the degradation within each block.
Specifically, in JPEG compression, as the compression ratio
increases, the number of zero-valued DCT coefficients within
each block generally increases, thus making each block
more uniform. Therefore, one potentially effective technique for
NR IQA of JPEG images is to count the number of zero-valued
DCT coefficients. However, such an approach cannot distin-
guish between naturally uniform/near-uniform blocks and dis-
torted blocks that have been made uniform/near-uniform via
quantization. Here, to overcome this problem, we use the DFT
to compute what we call a quality relevance map.
The quality relevance map for an image is a map that indi-

cates which blocks are naturally uniform (or near-uniform) vs.
which blocks have been made uniform (or near-uniform) via
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JPEG compression. We estimate quality by first counting the
number of zero-valued DCT coefficients within each block, and
then use the quality relevance map to weight these counts. The
quality relevance map is obtained by using a block-based DFT
to compute the local slope of the rotationally averaged magni-
tude spectrum. We have previously used this DFT-based local
slope measurement in [17] to develop a sharpness estimator for
natural images; there, we showed that the spectral slope is useful
for quantifying the perceived sharpness. In [17], the goal was
not to estimate quality but instead to estimate local perceived
sharpness. Here, we use the DFT-based local slope measure-
ment to help distinguish between naturally vs. compression-in-
duced uniform blocks across a wide range of JPEG compression
ratios. As we will demonstrate, our resulting algorithm, which
we call NJQA, performs well at IQA for a wide variety of JPEG
images.
This letter is organized as follows: In Section II, we provide

details of the NJQA algorithm. Section III presents and dis-
cusses the results of NJQA on the JPEG-compressed subsets
of three image-quality databases. General conclusions are pre-
sented in Section IV.

II. ALGORITHM

Two stages are used in NJQA to predict the quality of the
input image. The first stage generates the quality relevance
map of the image. The second stage estimates quality by first
counting the number of zero-valued DCT coefficients within
each block, and then summing and weighting these counts
based on the quality relevance map.
Let denote the -pixel input image. If the input is a

color image, we first convert it to grayscale via
, where , , and denote the 8-bit red,

green, and blue intensities, respectively.

A. Quality Relevance Map

In natural images, uniform blocks rarely occur in spatial iso-
lation. Rather, if a block is naturally uniform, it is usually sur-
rounded by other uniform or nearly uniforms blocks. In contrast,
blocks that originally contained structure but which have now
beenmade uniform or nearly uniform via JPEG compression are
almost always surrounded by non-uniform blocks. Thus, to dis-
tinguish between these two types of blocks (naturally uniform
vs. compression-induced uniform), we examine a larger
region around each block, where . If the local re-
gion is devoid of structure, then the block is deemed a naturally
uniform block.
One limitation of the above approach is that the larger

region, which is comprised of multiple blocks, might
contain compression-induced blocking artifacts which can be
confused with naturally occurring structure. One simple, yet
effective technique to circumvent this confusion is to apply amo-
tion-blurring filter to the image before examining each
region. Unlike standard deblocking algorithms which seek to
maximize visual quality, the motion-blurring filter satisfies two
important criteria: (1)When applied at an angle, themotion-blur-
ring filter can very effectively eliminate horizontal and vertical
blocking artifacts across a wide range of JPEG compression ra-
tios. (2)Themotion-blurringfilter serves tofill-in uniformblocks

Fig. 1. Example results of the Quality Relevance Map stage. (a) Input image.
(b) Motion-blurred version of (a). (c) The slope of the rotationally averaged
magnitude spectrum of (b). (d) Quality relevance map. Note that (c) and (d)
have been resized for visualization purposes only.

with structure fromsurroundingblocksas longas the surrounding
blocks also contain structure. Thus, the motion-blurring filter
facilitates the process of distinguishing naturally uniform blocks
from compression-induced uniform blocks. Blocks which are
naturally uniform (e.g., sky) will remain uniform after motion
blurring, whereas blocks which are uniform due to compression
will contain a small amount of structure after motion blurring.
Here, we apply a motion-blurring filter1 (see Fig. 1(b)) at an

angle of and with a Length of 50 pixels. These parame-
ters were empirically selected to satisfy the aforementioned two
criteria across a wide variety of images and compression ratios.
Next, to determine whether each block is uniform

or nearly uniform, we examine the local magnitude spectrum.
Specifically, we compute the slope of the rotationally averaged
magnitude spectrum for each block with 24 pixels of
overlap between neighboring blocks. Let denote the output
of the motion blurring filter, and let denote a block of
. We compute the 2D DFT of , denoted as , where

is the radial frequency and is the orientation. The magnitude
spectrum, summed across all orientations of , is given
by .
The slope of the magnitude spectrum of , denoted as ,

is computed via . Where the
-norm is taken over all radial frequency . The overall

normalized slope is given by:

(1)

where denotes the normalized slope map, and denotes
the th pixel value of (see Fig. 1(c)). Note that the map has
dimensions due to the overlapping blocks. Again, this
slope map is used here to identify blocks which appear uniform
or nearly uniform. The sigmoid normalizes the resulting map to
the range [0,1], where values near zero indicate more uniform
areas. The constants and follow from our work
in [17] where they were chosen to map the raw slope values to
estimates of local perceived smoothness.
Finally, the binary quality relevance map, , is formed via

the following equation:

otherwise
(2)

where indicates the th pixel value of the quality relevance
map (see Fig. 1(d)). In Equation (2), if the th pixel value of the
map is less than , the pixel is replaced by a black pixel.

Otherwise, the pixel will be replaced with a white pixel. The
threshold value is set low so that even subtle structure will be

1Using the MATLAB command .
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Fig. 2. Example quality relevance maps for high and low quality images. (a)
and (e) Input images, and 0.024. (b) and (f) Quality relevance
maps of (a) and (e), respectively. (c) and (g) Input images,
and 0.666. (d) and (h) Quality relevance map of (c) and (g), respectively. Note
that the maps have been resized for visualization purposes only.

considered relevant during the quality assessment process. The
result is a map , that differentiates between naturally uniform
blocks (black areas) and blocks which have been made uniform
by compression or contain structure (white areas).
The quality relevance map serves to distinguish between nat-

urally nearly uniform blocks and those blocks which may have
been made uniform during compression. Fig. 2 shows the simi-
larity of quality relevance map for different versions of the same
image with vastly different amounts of compression.

B. Quality Assessment

In the second stage of NJQA, we estimate quality by first
counting the number of zero-valued DCT coefficients within
each block, and then use the quality relevance map to
weight these counts. In general, as the quality decreases, the
number of zero-valued DCT coefficients increases. However, a
high quality image can also have areas with little spatial content
resulting in many zeros in the DCT coefficients. Thus, it is nec-
essary to employ our quality relevance map when considering
the number of zero-valued DCT coefficients.
The quality assessment considers each block of the

input image , and its corresponding quality relevance map .
Let denote the th block of size of the image .
The zero-valued DCT coefficients of the th image block
are categorized according to the th pixel value of the quality
relevance map . If the corresponding pixel value in the map is
zero, the result goes in the th element of a vector, ; otherwise,
the result goes in the th element of a vector, ; as follows:

(3)

where indicates the number of zero coefficients of the
2D DCT of .
Finally, quality degradation is estimated via the following

summation, weighted based on the quality relevance map:

(4)

Fig. 3. Qualitative results of our proposed algorithm; additional qualitative re-
sults are available online at [18].

where , where 0 denotes perfect quality. We as-
sume that areas with structures are more important than nearly
uniform areas in estimating image quality. Therefore, in Equa-
tion (4) we give lesser weight to the term.
We acknowledge that there are many empirical parameters

used in this algorithm. However, as we demonstrate in the online
supplement to this letter [18] the algorithm is robust to small
changes in these parameters.

III. RESULTS

This section analyses the performance of NJQA in terms of
qualitative and quantitative results.

A. Qualitative Results

Fig. 3 provides results of our algorithm on three images with
different qualities. As shown in Fig. 3, our algorithm can esti-
mate the qualities of images over a range of different qualities
in a manner that is consistent with human quality judgments
(DMOS). Notice that as we move from left to right within each
row, DMOS increases and NJQA follows a similar trend. In
terms of the across-image quality assessment, as we move from
top to bottom, DMOS increases and NJQA follows a similar
trend. Additional qualitative results are available online at [18].

B. Quantitative Results

To quantify the performance of our algorithm, we applied
NJQA to the JPEG image subsets of three image-quality
databases: LIVE [19], CSIQ [20], and TID [21]. The JPEG
subsets in the LIVE, CSIQ, and TID databases contain 204,
180, and 125 images, respectively. In these databases, 29 of
204, 30 of 180, and 25 of 125 were reference images. The
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TABLE I
COMPARISON OF NJQA VS. VARIOUS NR IQA ALGORITHMS ON THE JPEG SUBSET OF THE LIVE DATABASE.

BOLD ENTRIES ARE THE BEST AND SECOND-BEST PERFORMERS

TABLE II
COMPARISON OF NJQA VS. GENERAL-PURPOSE NR IQA AND

FR-IQA ALGORITHMS ON JPEG SUBSETS OF LIVE, CSIQ, AND TID.
BOLD ENTRIES ARE THE BEST AND SECOND-BEST PERFORMERS

performance of predicting subjective ratings of quality was
measured in terms of the Pearson linear correlation coeffi-
cient (PCC) (following nonlinear regression; see [22]), and
the Spearman rank-order correlation coefficient (SROCC) for
gauging prediction monotonicity.
Table I provides the comparison between our results and

various modern NR IQA algorithms designed specifically for
JPEG images on the JPEG subset (including reference images)
of the LIVE database. The results show that our algorithm
yields high correlation with the subjective quality ratings.
Moreover, as shown in Table I, our proposed method is the
only method which yields the best results in terms of both PCC
and SROCC.
We also analyzed our algorithm on the JPEG subsets of the

LIVE, CSIQ, and TID databases (excluding reference images)
in comparison to some modern general-purpose NR IQA
methods that employ training (DIIVINE [23] and BLIINDS-II
[24]), Peak Signal-to Noise Ratio (PSNR), the Structural Sim-
ilarity Index (SSIM), and Most Apparent Distortion (MAD)
[20]. The results, which are provided in Table II, show that our
algorithm is competitive with these FR and trained NR IQA
algorithms.

IV. CONCLUSION

This letter presented an algorithm for no-reference quality as-
sessment of JPEG images. Our algorithm, called NJQA, esti-
mates quality by first counting the number of zero-valued DCT
coefficients within each block, and then using a quality rele-
vance map to weight these counts. Testing on various image-
quality databases has shown that NJQA is either competitive
with or outperforms modern competing methods. A Matlab im-
plementation of NJQA is available at [18].
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