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ABSTRACT

We develop topologically accurate and compatible definitions
for the skeleton and watershed segmentation of a 3D digital
object that are computed by a single algorithm. These def-
initions are based on a discrete gradient vector field derived
from a signed distance transform. This gradient vector field is
amenable to topological analysis and simplification via For-
man’s discrete Morse theory and provides a filtration that can
be used as input to persistent homology algorithms. Efficient
implementations allow us to process large-scale x-ray micro-
CT data of rock cores and other materials.

Index Terms— Discrete Morse theory, Skeletonisation,
Watershed transform, Topological data analysis

1. INTRODUCTION

3D imaging technology, notably X-ray micro-CT, is now able
to routinely capture the structure inside complex materials
such as porous rocks, bones and manufactured materials with
excellent fidelity and resolution. The need to study these data
in a quantitative manner requires efficient algorithms for pro-
cessing large 3D images and for extracting topological and
geometrical measures.

One of the most fundamental descriptions of structure is
via homology: the mathematical characterisation of connec-
tivity, including connected components, independent loops
and enclosed voids. An essential ingredient in using homol-
ogy in the study of experimental and computational data to is
to build a filtration (a nested sequence of cell-complexes) that
captures the topology of the data with respect to a parameter,
usually a length-scale, that dictates the order in which cells
are added. Topological features (such as a hole through an
object) are born at some parameter value and are later merged
or filled in at a larger value. Features that are created and
destroyed almost simultaneously are considered noise while
features that persist over longer parameter ranges are deemed
to be more important. These lifetimes are encoded by persis-
tent homology; see [1] for an overview.
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For a suitably well-behaved real-valued function f de-
fined on a compact manifold, such a filtration can be derived
from the lower level cuts (i.e. sub-level sets) of f : Lf (c) =
{x | f(x) ≤ c}. Morse theory tells us that the topology of
these sub-level sets can only change when c passes a critical
value of f (i.e., at a local minimum, saddle point or maxi-
mum) [1]. The critical points and gradient flow-lines between
them are used to define an abstract cell complex with a fil-
tration ordering parameter (in this case c). The persistent ho-
mology of this filtration can be shown to be the same as the
sequence of the sub-level sets.

There have been many applications of Morse theory to
digital image analysis, see the review [2], for example. We
model greyscale digital images as real-valued functions on
the vertices of a cubical complex [3]. In our setting, the vox-
els (i, j, k) ∈ D ⊂ Z3 are the vertices (0-cells) of the com-
plex. Higher-dimensional cells are the unit edges (1-cells) be-
tween adjacent voxels, unit squares (2-cells), and unit cubes
(3-cells). We initially extend a greyscale function g : D → R
to the full cubical complex K by taking the maximal value
from the vertices of a cell:

g(β) := max{g(α) | α < β, α ∈ D}. (1)

Here the notation α < β means that α is a face of β and that
β is a coface of α. If the dimensions of α and β differ by one
then we say that α is a facet of β.

Given any function defined on a complex f : K → R the
lower level subcomplex is

Kf (c) := {α | α ≤ β for f(β) ≤ c}.

The connectivity of the cubical level subcomplex for the
maximal-vertex function g is equivalent to the standard 6-
neighbourhood of 3D digital topology [4].

An elegant and effective approach to extending Morse the-
ory to functions on cell complexes is provided by Robin For-
man’s discrete Morse theory [5]. He defines a discrete Morse
function on a cell complex so that a critical point of index i
in the classical theory becomes a critical cell of dimension i.
Gradient flow lines between critical points of index (i + 1)
and i become paths of (cell, cofacet) pairs in a discrete vector
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field, these are called V-paths. A discrete vector field pairs
adjacent cells with dimensions i and i + 1 so that no cell in
the complex appears in more than one pair. Cells that are
unpaired are critical. In a gradient vector field there are no
loops. A discrete Morse function f : K → R is such that
(α, β) form a (cell, cofacet) pair in a gradient vector field if
and only if f(α) ≥ f(β). The maximal-vertex function g
defined in (1) does not fulfil the requirements for a discrete
Morse function. Methods for extending the voxel-values to a
valid discrete Morse function on the full cubical complex have
recently emerged [6][7]. These methods build on work for
simplicial meshes [8] and extend voxel classification schemes
from digital topology[9].

Using the above framework, we can show that the closely
related techniques of discrete Morse theory and persistent ho-
mology provide a rigorous framework for generalising and
unifying various traditional tools from image analysis such
as skeletonization by thinning [10, 11, 12, 13], and the water-
shed transform [14, 15, 16, 17]. The connections between dis-
crete Morse theory (or simple homotopy), persistent homol-
ogy, and the use of stable and unstable manifolds to partition
scalar functions on cell complexes have also been explored
recently by other authors [18, 19, 20, 21, 22, 7].

This paper is laid out as follows. In section 2 we provide
a new definition for the homotopic skeleton of a 3D digital
object, which emerges as a subcomplex of the Morse com-
plex and can therefore be computed without explicit thinning.
In Section 3 it is shown that one can also define a watershed
segmentation (or partitioning) as part of the Morse extraction
procedure. In Section 4 we discuss the application of per-
sistent homology for the simplification of the resulting struc-
tures, while in Section 5 the techniques are applied to x-ray
tomographic imaging data.

2. THE MORSE SKELETON

Throughout this section, let K be a cubical complex (e.g. as
derived from a 3D digital image) with discrete Morse function
f : K → R and associated gradient vector field V , defined by
V (α) = β if α is the single facet of β such that f(α) ≥ f(β).
We also write V (γ) = 0 when γ is critical or when γ = V (α)
for some facet α. We assume without loss of generality that
the values of f are unique on the cells of K.

Let α be a critical p-cell in K. We use V -paths that end
or start at α to define its stable or unstable sets respectively.
Formally, the stable set of α, denoted SK(α), is the smallest
set of p-cells in K such that α ∈ SK(α) and

V (δ(p)) = γ(p+1) > β(p) ∈ SK(α) implies δ ∈ SK(α).

Similarly, the unstable set of α, denoted UK(α), is the small-
est set of p-cells such that α ∈ UK(α) and

V −1(δ(p)) = γ(p−1) < β(p) ∈ UK(α) implies δ ∈ UK(α).

Fig. 1. The Morse skeleton (in blue) generated from the
signed Euclidean distance transform of the binary image of a
sphere pack, where the pore space is the foreground and takes
negative image values. Where critical 2-cells are in the pore
space their unstable sets are shown as blue skeleton patches;
a line skeleton, lacking such patches, would poorly represent
the geometry.

Note that the stable and unstable sets of α contain cells only of
dimension p. It is useful therefore, to also define an unstable
complex of α as the closure of its unstable set.

WK(α) := {γ | γ ≤ δ ∈ UK(α)}.

We do not make a dual definition of stable complex as it
would most naturally involve the cofaces of elements in
SK(α) (rather than faces) and therefore not be a subcomplex
of K.

The Morse skeleton AK is now defined to be the subcom-
plex built from unstable complexes of critical cells,

AK :=
⋃

α critical

WK(α).

WhenK and f are derived from a greyscale digital image on a
rectangular domain, the skeleton is effectively the entire com-
plex; it is when we examine the level subcomplexes that the
Morse skeleton gives us an interesting summary of structure.
It can be shown that

AK(c) =
⋃

α critical
f(α)≤c

WK(c)(α) =
⋃

α critical
f(α)≤c

WK(α).

This means we need only determine the unstable complexes
of critical points with respect to the complex K, there is no
need to recompute for different level subcomplexes. The
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Morse skeleton for any choice of threshold is then given by
the unstable complexes whose critical value is less than the
threshold.

We are also able to show that the Morse skeleton, AK(c)
is homotopy equivalent toK(c) via a “regular collapse” along
the V -paths. This regular collapse is analogous to a thinning
process in digital image analysis [10]. The use of discrete
Morse theory means that the collapse (or thinning) does not
have to be performed explicitly and there are no ambiguities
in its construction. Geometric properties of the skeleton (such
as being centred with respect to the object boundary) depend
on the initial function which is commonly a signed distance
transform of a binary image [23]; see Figures 1 and 2 for
illustration.

3. BASINS AND BRIDGES

Having used unstable sets to define the Morse skeleton, we
now investigate the role of stable sets in partitioning the ver-
tex set of the complex K with discrete Morse function f into
regions similar to those derived by watershed algorithms. We
have already noted that in general, the stable set of a critical
cell cannot be extended to a subcomplex in a manner dual to
the unstable complex. But for critical 0-cells, i.e. minima, we
can define the basin BK(α) as the maximal subcomplex of K
that has a regular collapse onto α. It is not hard to show that
each vertex of K belongs to the stable set (and therefore the
basin) of exactly one local minimum. The same is not true
of k-cells with k ≥ 1. We call a 1-cell that is not contained
in any basin a bridge. If β is a bridge, then we must have
V −1(β) = 0, so either β is critical (a 1-saddle), or V (β) 6= 0.
When β is a bridge between the basins of two minima B(α)
and B(γ), the V -paths that start at each vertex of β form a
path between α and γ that we call the canonical path defined
by β. If β is a critical 1-cell, this path is the unstable complex
of β and forms part of the Morse skeleton of K, so we have
established that when two minima are in the unstable complex
of a 1-saddle, their basins are adjacent at that 1-saddle. The
converse is not true: two basins may be adjacent when there
is no critical 1-cell bridging their minima; the basins labelled
‘A’ and ‘C’ in Fig. 2 illustrate this. In this case the canonical
path of a non-critical bridge captures the additional connec-
tivity between minima. This is valuable for many applications
where region adjacency is of physical relevance.

4. SIMPLIFICATION

A naive application of the watershed partition to a real image
(even one with small-amplitude noise) generally creates more
basins than necessary to effectively summarize the structures
present. Many strategies have been proposed to reduce this
effect, with marker-based watersheds [24, 17] proving highly
successful. Medial axis skeletons are also typically pruned

Fig. 2. A small section of Morse skeleton and partition de-
rived from the signed Euclidean distance transform of a 2D
binary image. The discrete Morse gradient vector field is cal-
culated, simplified to a persistence threshold of 1 voxel unit
and used to simultaneously find the basins and skeleton of
the foreground, i.e. the lower level cut at threshold 0. The
coloured regions show a partitioning of the foreground via
basins of the local minima (black dots). Basin boundaries
are marked by thick blue-grey lines that lie along V-paths be-
tween maxima (grey dots) and saddles (blue dots). Basin B is
connected to basin A by a critical bridge (the saddle point d)
and to basin C by two critical bridges (saddles e and g), but
A and C have only non-critical bridges between them. Note
the intricate structure associated with saddle f and maximum
m. The basin B and the coloured pore are both topological
disks because the V-path between f and m contains bridges
that make a cut.

to remove artefacts that result from noise or surface rough-
ness [23].

Naturally these issues also occur when we construct the
Morse basins and skeleton of a real image, resulting in fea-
tures that have a low importance. The Morse theory approach,
which yields a complete filtration, has two advantages when
undertaking this simplification exercise. Firstly, we have ad-
ditional information, from the fact that the complex contains
cells of all dimensions from 0 to 3, and the fact that we have
a compatible skeletonisation and partitioning. Secondly, we
can use concepts from persistent homology that can be ap-
plied when a complete filtration is present [25]. As we saw
in the previous section, adjacent basins may or may not be
connected via a 1-saddle, and identifying this is crucial to
merging basins in a way that preserves important topological
information as measured by persistent homology. Discrete
Morse theory has built-in techniques for cancelling critical
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points by reversing pairs along a V-path and the natural con-
nection with homology means we can simplify the topology
of the level sets in a controlled way [19]. Morse theory also
incorporates higher-order topological changes such as filling
in extraneous loops and voids with the same techniques. We
find that when working with distance transforms, cancellation
of critical point pairs with a persistence of less than 1 voxel
unit provides a sufficient level of simplification while main-
taining a high level of detail; see Fig. 2.

Simplification strategies are the subject of ongoing re-
search. For example, it is possible to incorporate measures
of feature size similar to those in [17] within the persistence
framework. The features we can measure go beyond basins
of local minima to include higher-dimensional structures de-
fined by the 1- and 2-saddles. This allows us to discriminate
between convex and concave shapes of various classes. For
example the distance transform of a barbell shape is charac-
terised by two local minima joined by a 1-saddle while that
of a squashed ball (similar to a red blood cell) must contain
a 2-saddle and one or more local minima and 1-saddles. By
examining the persistence of the 1-cycle and the size of the
unstable set of the 2-saddle that it is paired with, we can de-
cide whether to cancel or preserve this feature.

5. APPLICATION TO POROUS MATERIALS

Starting with a grayscale 3D image of a porous material, we
first classify voxels as either ‘pore’ (foreground) or ’grain’
(background) thus obtaining a binary image. To study the ge-
ometry defined by this image it is natural to apply the signed
Euclidean distance transform (SEDT), so that the greyscale
function g encodes the distance of each voxel from the bound-
ary between foreground and background voxels. By mak-
ing the distance negative in the foreground and positive in
the background, we see that the Morse skeleton at threshold
c = 0 defines a medial surface of the foreground and that the
basins partition the foreground in a dual fashion. The Morse
skeleton and basins now provide simultaneous and compati-
ble methods for describing the foreground geometry. Figure
1 shows the Morse skeleton of the pore space of a packing
of glass spheres, computed from a micron-scale x-ray micro-
CT image as described above. To illustrate both the skeleton
and basins, Fig. 2 shows a small subset of a 2D dataset: a
single slice taken from a micro-CT image of a Mt Gambier
limestone core.

Persistent homology of SEDTs can help describe the mor-
phology of a porous material in a variety of ways including
pore- and grain-size distributions. As a further example, in
Fig. 3 we show the 1-dimensional persistence diagrams [1]
for the pore-space of four granular samples that are publicly
available (xct.anu.edu.au/network comparison). In general,
1D homology encodes the independent cycles (loops) in a cell
complex. In the Morse filtration of an SEDT, a cycle is born
when a 1-saddle is added between two minima that already
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Fig. 3. Persistence diagrams (represented as 2D histograms
of persistence pairs) for 1D cycles in the pore-space of four
samples: (a) mono-disperse spherical bead pack, (b) polydis-
perse unconsolidated sand, (c) well-consolidated Castlegate
sandstone, (d) fossiliferous Mt Gambier limestone.

belong to the same connected component and that cycle dies
when a 2-saddle is added turning the 1-cycle into a boundary.
Cycles that have birth values < 0 are loops in the pore space;
those that also have death value< 0 correspond to 2D patches
in the Morse skeleton, cf. Fig. 1. From the data in Fig. 3, we
can see that only the pore-space of the sandstone (c) will be
well-represented by a linear skeleton, the other samples have
a large proportion of persistent 2-saddles lying in the pore-
space. The consolidation of grains can also be seen in these
diagrams as the proportion of pairs that have birth and death
values above 0.

Aside from their theoretical interest, we see the results of
this paper as being of practical value for two reasons. Firstly,
a consistent skeleton and partition, along with tools from the
emerging field of persistent homology, provide a rich set of
measures for characterization. Secondly, simultaneous par-
titioning and skeletonisation provides just the information
required to construct a representative pore-network. Pore-
network models are used in the simulation of fluid transport
in porous media, and particularly the flow of multiple im-
miscible fluids. The algorithms and objects defined here will
allow the generation of such network models with greater
geometrical and topological fidelity. We emphasise that the
algorithms to perform this Morse analysis on 3D images,
based on that in [6], are of genuine practical value since they
can be implemented efficiently and on distributed architec-
tures.
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