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ABSTRACT

Recent advances in tackling large-scale computer vision
problems have supported the use of an extremely high-
dimensional descriptor to encode the image data. Under such
a setting, we focus on how to efficiently carry out similarity
search via employing binary codes. Observe that most of the
popular high-dimensional descriptors induce feature vectors
that have an implicit 2-D structure. We exploit this property
to reduce the computation cost and high complexity. Specifi-
cally, our method generalizes the Iterative Quantization (ITQ)
framework to handle extremely high-dimensional data in two
steps. First, we restrict the dimensionality-reduction projec-
tion to a block-diagonal form and decide it by independently
solving several moderate-size PCA sub-problems. Second,
we replace the full rotation in ITQ with a bilinear rotation
to improve the efficiency both in training and testing. Our
experimental results on a large-scale dataset and comparisons
with a state-of-the-art technique are promising.

Index Terms— Binary code, hashing, similarity search

1. INTRODUCTION

Identifying images (or image patches) of interest from a
given collection of candidates is fundamental to many com-
puter vision techniques. As the scale of image database
grows enormously, how to design methods to efficiently and
satisfactorily carry out the retrieval task has attracted much
attention. Among the many research efforts, quite a number
of hashing schemes to yield binary codes have been proposed
to approximate nearest-neighbor search, e.g., [1, 2, 3, 4].
Nevertheless, while most of these approaches are supported
by theoretical foundation and demonstrated with acceptable
performances over popular benchmark datasets, they often
target at dealing with low-dimensional feature vectors such
as 512-D GIST. It is generally hard to directly use them to
accommodate the case that each image is represented by an
extremely high-dimensional (say, more than 100K dimen-
sions) feature vector. The predicament is mostly due to two
practical issues. First, the extremely high-dimensional set-
ting would cause the underlying dimensionality reduction
technique to become unfeasible or require excessive time
and computing resources in learning the mapping. Second,
even when the difficulties in training could be overcome, the

resulting hashing scheme is simply computationally too ex-
pensive to be applied to computing the binary code of a query
image. On the other hand, recent advances in vision research
have revealed that for large-scale problems like fine-grained
level object categorization over ImageNet [5], adopting an
extremely high-dimensional descriptor is preferable [6, 7].
The promising results suggest that extending binary codes for
high-dimensional data would very likely expand the useful-
ness of the technique in handling large-scale and complicated
computer vision problems and applications.

We explore the implicit 2-D structure embedded in many
of the popular high-dimensional descriptors, e.g., Fisher Vec-
tors (FV) [8], Vectors of Locally Aggregated Descriptors
(VLAD) [7] and Locality constrained Linear Codes (LLC)
[9], and decompose it into sub-structures of smaller dimen-
sions that can be independently tackled. Our approach is mo-
tivated by Product Quantization (PQ) [10], which generates a
large number of quantization centroids by regularly subdivid-
ing the feature space. Specifically, like ITQ [1], the proposed
method needs to compute a dimensionality-reduction map-
ping and a rotation matrix for yielding binary codes. With the
feature decomposition, the mapping can be represented by
a very sparse block diagonal matrix so that memory storage
and computation time for generating a binary code can be
significantly reduced. Indeed the resulting mapping can be
constructed by simultaneously solving a PCA problem with
respect to each decomposed feature space. To decide the rota-
tion matrix, we restrict it to the bilinear rotation as described
in [11]. Our experiments show that the retrieval results by our
method empirically well approximate those by ITQ but with
substantial improvement in efficiency.

2. RELATED WORK

We aim to introduce an unsupervised technique to generate
binary codes for extremely high-dimensional data. The litera-
ture survey thus focuses mainly on relevant work about unsu-
pervised binary coding and recent techniques for constructing
and handling high-dimensional data/descriptors.

To efficiently perform approximate similarity search, Lo-
cality Sensitive Hashing (LSH) by Gionis et al. [12] relies
on random projections, each of which ensures that the prob-
ability of hashing collision is closely related to the distance
between two points. In [1], Gong and Lazebnik propose the
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Iterative Quantization (ITQ) framework that instead of using
random projections, the method first reduces data dimensions
to the desired code length by a PCA projection and then de-
cides a rotation matrix to minimize the quantization loss of
binary codes. While ITQ has been shown to be effective for
handling large-scale data described by an image descriptor of
moderate dimensions, the technique does not generalize well
to high-dimensional data. It would not only take considerable
memory space to store the PCA projection of extremely high
dimensions but also demand an extensive computation in per-
forming dimensionality reduction. More critically, comput-
ing the PCA projection and optimizing the rotation matrix in
training would become unfeasible. To address these issues,
Gong et al. [11] further propose to use a bilinear projection
to replace the lower-dimensional projection followed by rota-
tion technique of ITQ. However, the method completely skips
the PCA step and achieves dimensionality reduction only by
simplifying a bilinear rotation.

As computer vision techniques move in progress with
new challenges emerging constantly, the effectiveness of
high-dimensional features has been demonstrated in various
applications, including image classification [6, 7] and face
verification [13]. The often-used high-dimensional image
descriptors, including LLC [9], FV [8] and VLAD [7], are
proposed to surpass the limitation of Bag-of-Words represen-
tation, which considers only the 0th-order statistics of fea-
tures. Derived by approximately solving locality-constrained
sparse representations and pooling over a spatial pyramid, the
LLC feature vector has a dimension specified by the product
between the size of the dictionary and the number of spatial
bins. Both VLAD and FV can encode 1st-order statistics
(optionally, 2nd-order for FV). The dimension of FV is twice
of the dimension of VLAD descriptor, which is the size of
the dictionary multiplied by the dimension of the local im-
age feature. In view of how their dimension is computed, it
implies that the aforementioned high-dimensional descriptors
have a nature 2-D representation in matrix form, which can
be conveniently exploited by bilinear mappings [11].

Adopting a high-dimensional feature representation un-
avoidably leads to high cost both in training and testing
phases. Hence, how to craftily utilize such a descriptor is
pivotal in advancing the performance. To this end, PQ [10]
decomposes the vector space and independently quantizes
each subspace to yield quantization centroids. Sánchez and
Perronnin [14] further suggest that PQ is suited to balancing
classification accuracy, computational cost and storage cost
for high-dimensional data. With regard to dimensionality
reduction, Chen et al. [13] approximate a lower-dimensional
projection by sparse regression, which can reduce, without
sacrificing accuracy, computational cost and memory usage.
The main idea of our method is relevant to these techniques
in that the proposed approach to overcoming the challeng-
ing computation cost critically relies on decomposing the
high-dimensional feature space and the mappings.

3. EFFICIENT BINARY CODES

The crux of our method consists in how to make use of the
implicit 2-D structure of a high-dimensional descriptor so that
computation and resource demanding optimization problems
are reduced to those that can be handled more efficiently. In
addition, since our approach extends ITQ to handle extremely
high-dimensional data, it is convenient to lay out its formula-
tion to better understand what prevent ITQ from being effi-
cient and how we could resolve these difficulties.

3.1. ITQ

ITQ is an unsupervised technique for computing binary
codes. It comprises two main steps to achieve the task,
namely, to compute a lower-dimensional projection and to
optimize a rotation matrix.

Given a set of data points {xi ∈ Rd}ni=1, we form the
data matrix D ∈ Rd×n with xi being the ith column. ITQ
is to compute the binary codes B ∈ {−1, 1}c×n where its
ith column, denoted as bi, is the c-bit (c < d) binary code
of xi. The algorithm begins with finding c projection direc-
tions {wk ∈ Rd}ck=1 such that the variance of each bit is
maximized and the bits are pairwise uncorrelated. We use
W ∈ Rd×c to express the resulting dimensionality-reduction
projection where wk is the kth column. It turns out that find-
ing the optimal W can be casted as solving a PCA problem:

W ∗ = argmax
W

c∑
k=1

E(‖wT
k x‖22), WTW = I. (1)

After using PCA to carry out the dimensionality reduc-
tion, the next important step of ITQ is to obtain a rotation
matrix R ∈ Rc×c, which will be applied to the projected data
so that the quantization loss of the resulting binary codes is
minimized. We have

{B∗, R∗} = argmin
B,R
‖B −RTW ∗TD‖2F (2)

where ‖ · ‖F denotes the Frobenius norm. The optimization
problem (2) can be effectively solved as described in [1] and
the binary codes are given by

B∗ = sgn(R∗TW ∗TD). (3)

3.2. Our Method

With (1)-(3), it can be readily inferred that ITQ would de-
grade into an inefficient scheme when the feature dimension
d becomes extremely large. To deal with the high complexity,
Gong et al. [11] propose to omit the PCA dimensionality re-
duction in that solving (1) is too computationally expensive.
While the tactic is handy in avoiding a challenging extremely
large-scale PCA problem, it nevertheless loses the nice prop-
erty of bit-wise balance embodied in ITQ.
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We instead choose to approximately and efficiently solve
(1) by taking account of the implicit 2-D structures of the ex-
tremely high-dimensional descriptors mentioned in Section 2.
Specifically, we assume that the high dimension is expressed
by d = dr×dc. Take, for example, the case of using a VLAD
descriptor constructed based on a dictionary of 1024 atoms,
each of which is described by SIFT. Then we have dr = 128
and dc = 1024. To be able to manage the computation load-
ing of (1), we restrict the dimensionality-reduction projection
W to a sparse block-diagonal matrix. That is,

W =


W1

W2

. . .
Wdc

 ∈ Rd×c (4)

where nonzero elements in W appear only at the diagonal
blocks Wj ∈ Rdr×ĉ, j = 1, . . . , dc and ĉ = c/dc. Corre-
spondingly, we consider decomposing each extremely high-
dimensional data point x ∈ Rd into dc segments and repre-
sent its jth segment by x(j) ∈ Rdr . The PCA problem in (1)
can then be reduced to

W ∗ = argmax
W

dc∑
j=1

ĉ∑
k=1

E(‖wT
jk x(j)‖22),

WT
j Wj = I ∈ Rĉ×ĉ, ∀j ∈ {1, . . . , dc},

(5)

where wjk is the kth column of Wj . The new PCA problem
posed in (5) implies that it can be decomposed into dc tasks,
each of which is now a smaller-size of PCA problem and can
be solved efficiently and independently. Finally, we denote
the mapping of each data point by W ∗ as

xi ∈ Rd 7−→ yi = W ∗Txi ∈ Rc, ∀i ∈ {1, . . . , n}. (6)

Analogous to ITQ, the remaining task is to find the opti-
mal rotation matrix R∗ ∈ Rc×c that minimizes the quantiza-
tion loss of the resulting c-bit binary codes. Since the length
of a binary code could be quite large, say, more than 10000,
directly solving (2) is still impractical. Inspired by [11], we
limit R to a bilinear rotation to alleviate the computation bur-
den. That is, we can then write R = R2⊗R1 where compared
with R, both R1 ∈ Rĉ×ĉ and R2 ∈ Rdc×dc are rotations of
a much smaller size, and ⊗ denotes the Kronecker product.
(Recall that c = ĉ×dc.) We follow the optimization technique
in [11] to compute the optimal R∗

1 and R∗
2. Let Yi ∈ Rĉ×dc

be the 2-D matrix form of yi. Then the c-bit binary code of
xi, i = 1, . . . , n can be obtained by

bi = vec(sgn(R∗T
1 YiR

∗
2)) (7)

where the notation vec(·) reshapes a matrix into a vector by
column-wise stacking.

4. EXPERIMENTS AND DISCUSSIONS

We evaluate the effectiveness of our approach on a large-scale
dataset. The experiments are to verify our claim that retaining
the dimensionality-reduction PCA step is crucial in general-
izing ITQ to deal with extremely high-dimensional data. Our
experimental results show that the proposed method empiri-
cally well approximates ITQ when using a sufficiently long
code length, a case that ITQ cannot be efficiently applied.

4.1. Evaluation Protocols

We test our method on ILSVRC2010, which is a subset of
ImageNet, and conduct performance comparisons with BPBC
[11], a state-of-the-art algorithm that computes binary codes
for high-dimensional data. The dataset includes 1.2M images
over 1000 categories. We randomly select 30K images to
learn the PCA projection W ∗ in (5) and the bilinear rotation
R∗ = R∗

2 ⊗ R∗
1 for our method. For the sake of compari-

son, we adopt VLAD and LLC image descriptors, which are
also used in BPBC. We download from the ImageNet web-
site the public SIFT features which are densely extracted at
three different scales. To construct the VLAD descriptor, we
form 200 clusters and assign each SIFT feature to one of the
clusters to represent an image. The resulting dimension is
d = dr × dc = 128 × 200 = 25600. As suggested in [15],
we normalize VLAD feature vectors by intra-normalization
followed by L2-normalization. For the LLC descriptor, we
construct a dictionary of size 5000 and aggregate LLC rep-
resentation using a three-level spatial pyramid and max pool-
ing. The aggregated feature vector is further processed by
zero-centering and L2-normalization. The dimension of the
resulting LLC is d = dr × dc = 5000× 21 = 105000.

To evaluate the performance, we randomly sample 1000
images, which are not used in training, as query images. The
ground-truth nearest neighbors are defined as the top 10 near-
est neighbors measured by Euclidean distance. The recall is
computed by the top k retrieved images based on Hamming
distance. For a fair comparison, BPBC is trained with the ex-
act same data. In addition, when using VLAD, we also look
into how well our method can approximate ITQ if the PCA
problem in (1) can be solved exactly. For all methods, we use
the same random splits of training and testing data.

4.2. Retrieval Results

Figures 1(a) and 1(b) show the performance comparisons be-
tween our method and BPBC when the data are described by
VLAD. The recall of 10NN is evaluated with different num-
bers of top k returns. The results indicate that our method,
when encoded with sufficient number of bits such as 6400 or
12800, can reasonably preserve the distance measures in the
high-dimensional (d = 25600) space. It outperforms BPBC
by more than 10% when using a moderate code size like 6400
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(a) c = 6400 (b) c = 12800 (c) k = 50 (d) k = 100

Fig. 1. [25600-D VLAD] Retrieval performance is measured by averaged recall of the top k returned images for each query.
In (a) and (b), the curves of recall vs. value of k are plotted when code length c is respectively set to 6400 and 12800 for both
methods. In (c) and (d), the curves of recall vs. code size c are plotted when k is respectively set to 50 and 100 for all methods.

bits. The effectiveness justifies that retaining the PCA projec-
tion step is useful and enables our method to require less bits
to preserve the neighborhood relations than BPBC.

We next compare our method with ITQ to see the effect
of solving the PCA problem by assuming a block-diagonal
projection W . Note that the results by ITQ are plotted only
up to 6400 bits in Figures 1(c) and 1(d) since using ITQ to
yield binary codes of 12800 bits is too computationally ex-
pensive to complete. Instead, we replace the computation of a
full rotation in ITQ with a bilinear rotation and term the tech-
nique as PCA+BR. Thus, there are totally four methods to be
investigated, including ITQ, PCA+BR, BPBC and ours. In
Figures 1(c) and 1(d), we observe that the red curves are al-
most aligned with the magenta ones, indicating that when the
used descriptor (like VLAD) displays 2-D structure, bilinear
rotations are suitable for yielding binary codes. Stacking up
the recall results by ITQ, PCA+BR and ours, they are com-
parable when the code size is larger than 3200. On the other
hand, the short-code performance by our method drops signif-
icantly and even falls below that by BPBC. The phenomenon
is mainly caused by our simplification of the PCA projection
that would lose too much information when the code length
is short. This is not harmful as in practice long binary codes
are needed to carry out approximate similarity search for ex-
tremely high-dimensional data. It can also be observed from
Figures 1(c) and 1(d) that long codes are necessary for the
four methods to perform satisfactorily. To demonstrate the
scalability of our method, we reduce the data dimension by
half as in [11] to obtain binary codes of 52500 bits for LLC
feature. Figure 2 shows the results of recall versus number of
retrieved images. As BPBC works quite well with LLC, our
method could still further improve the performance.

On computational efficiency, we report the required time
by ITQ and our method in learning the PCA projection and
applying the projection in testing, respectively. Notice that
when using the LLC descriptor, the results by ITQ cannot be
obtained due to the extremely heavy computation cost (af-
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Fig. 2. [105000-D LLC] Retrieval performance is measured
by averaged recall of the top k returned images for each query.
The code length c is set to 52500 for both methods.

ter running for more than one week) and hence not reported.
All running time in Table 1 is computed on a PC with 2-core
2.4GHz 24GB RAM in Matlab implementation. The results
show that our method substantially reduces the running time
both in training and testing phases. Especially with VLAD,
our method adds only negligible cost on testing while gaining
significant improvements on retrieval results.

Table 1. Time for learning a PCA projection and average time
for applying dimensional reduction in coding step. The code
size is 12800 and 52500 for VLAD and LLC respectively.

ITQ Ours
training testing training testing

VLAD ∼ 20 hrs 1.31 secs 46.46 secs 0.007 secs
LLC * * ∼ 5 hrs 1.15 secs
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