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ABSTRACT

We study the INTRA-prediction operation employed in hy-
brid video coders where sample values to be compressed are
predicted using previously-decoded context values and the
prediction errors are transform coded. Given the context val-
ues this procedure can be argued to be rate-distortion optimal
for Gaussian signals. Yet natural images and video contain
many structures that do not readily fit into Gaussian signal
assumptions. Targeting such structures we propose a tech-
nique that predicts each sample using the context values and
samples that are jointly transform coded with the predicted
sample. We show that this joint, non-causal encoding can be
represented with a nonorthogonal transform whose form and
parameters we derive. We augment the HEVC standard with
our work and show significant compression improvements on
images/video that contain directional structures.

Index Terms— Nonorthogonal Transforms, DPCM, IN-
TRA Prediction, HEVC, AVC, VP9

1. INTRODUCTION

Recent hybrid video coders ([1, 2, 3]) have successfully uti-
lized prediction in the encoding of anchor frames by spa-
tially predicting samples to be compressed using previously-
decoded samples (context values) and transform coding the
prediction errors. This encoding allows the continued utiliza-
tion of computationally attractive block transforms even on
signals over which block transforms are significantly subopti-
mal. Signals with significant inter-block correlations, signals
with edges and other directional singularities can be cited as
examples [4, 5, 6]. The spatial prediction operation can thus
be thought of as coarsely adapting to sophisticated random
processes by generating prediction residuals that are more
amenable to compression with simple transforms. Regard-
less, because the prediction operation is carried out using con-
text values alone, the efficacy is still strongly tied to the un-
derlying processes exhibiting Gaussian-like behaviour.

In order to make the discussion concrete consider the one-
dimensional example where one is tasked with compressing
the sequence x;, ¢ = 1,..., N, using the context sample z.
x can contain, for example, a horizontal or oriented sequence
of pixels from a block of image pixels which will undergo
directional prediction using the context sample x( obtained
from the boundary of a previously decoded block [1, 2, 3].
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Assume that the identical context sample is available to the
encoder-decoder pair. Denote the linear prediction of x; using
xo with P;(x¢) and define the residuals

ri = x; — Pi(xo). (1
One hence has the encoding chain,
r; = x; — Pi(xg) = transform_code(r), 2)

and the decoding chain,
transform decode = 7 = &; = P;(xo) + 74, (3)

where = denotes the decoded sequence. It is well-known
that if one picks the optimal linear predictor and utilizes the
Karhunen-Loeve transform tuned to the second order statis-
tics of r then the above process is asymptotically optimal for
the compression of Gaussian sequences [7]. Yet for many
image/video structures such Gaussian modeling is also well-
known not to be adequate. As we will see in this paper one can
significantly improve on the above prediction recipe by utiliz-
ing better predictors that make use of all decoded information
during the decoding process. While for accurately-modeled
Gaussian signals this extra information is in effect useless,
our results will clearly show its benefit on images/video that
contain edges and directional structures.

The outline of the paper is as follows. Section 1.1 dis-
cusses the basic ideas of this work by means of the one-
dimensional example. Committing to linear predictors, Sec-
tion 1.2 discusses connections of the presented ideas with
DPCM and derives an equivalent nonorthogonal transform.
After briefly discussing codec construction in Section 1.3
we consider compression with nonorthogonal transforms and
derive rate-distortion optimal quantization parameters in Sec-
tion 2. Simulation results and implementation details are
discussed in Section 3 followed by concluding remarks.

1.1. Basic Ideas

It is clear from (3) that after transform decoding the decoder
has access to all of the residual samples. However, it only
uses g and r; when decoding the i*" sample, #;. In partic-
ular, note that when decoding Z;; the decoder has already
reconstructed Z;, which is typically a far better predictor of
Zi41 compared to zo. In this paper we design the decoding
chain,

transform_decode = 7 =

i'L:PfZ(xoﬂzlvaf'N)—’_f'z (4)
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Since the decoder has all of the transform-decoded residuals
available it is clear that this chain and the augmented predic-
tor P’ are feasible. The corresponding encoding chain can
be described as the selection of optimal coded transform co-
efficients which, when fed into the transform decoder in (4),
result in & that has the minimum distortion at a given target
bit-rate.

While our work can be generalized to nonlinear predic-
tion functions we will keep the computationally simple, linear
predictors in [1, 2] but accomplish prediction using the clos-
est available samples rather than using x everywhere. For
the one dimensional example we hence construct,

1 = Pi(xo) +71 =20+ 71,
Ty = Pal@1)+ 7o =0+ 71 + 7o,
N = 'PN(L)ACN_l)JrfN:.’boJrTAlJr.‘.Jr?gN, %)

where we have assumed that the prediction is linear with a
prediction weight of unity as in [1, 2]. Observe that in this
setting the prediction P;(x¢) in (3) is simply replaced with
Pi(&;—1). Other weights and types of linear predictors are
straightforward generalizations.

1.2. Relationship to DPCM and Equivalent Nonorthogo-
nal Transforms

It is interesting to note that (5) resembles a first-order DPCM
decoder that is operating with a prediction weight of unity.
Note that while a DPCM system will encode the residuals
causally and independently [8], the decoder of (5) corre-
sponds to decoding of residuals that have been encoded
non-causally and jointly. This is due to 7 being the output of
the transform decoder shown in (4). It can be said that the
proposed system gains the prediction accuracy of a DPCM
system while exploiting residual dependencies (and other
DPCM R-D inefficiencies [8]) via transform coding.

Observe also that (5) leads to the matrix equation

Z = Fr + Buxy, (6)

where F is a (IV x V) lower triangular prediction matrix with
1 iz

Fij= { 0, otherwise, )

and for this simple example B is a (N x 1) matrix with unit
entries. Augmenting (6) to accommodate transform coding
we arrive at

z =FTc+ Buxo, ®)
where T (N x N) is the transform used in compression (e.g.,
the block DCT/DST in HEVC [2]) and ¢ are the de-quantized
transform coefficients. Letting G = FT it is hence clear that
(8) corresponds to the transform coding of £ — Bz with the
nonorthogonal transform G via,

T — Bz = G¢, ©))
In a nutshell then, in this simple linear form, the proposed
work is the transform compression of x — Bx( using the
nonorthogonal transform G.
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1.3. Codec Construction

Using mode-based linear predictors it is clear that the pro-
posed decoding chain can be incorporated within a baseline
hybrid codec like HEVC by designing F and B matrices and
deriving the equivalent nonorthogonal transform G for each
prediction mode (Section 3). Observe that such a decoding
chain will have only marginal complexity increase compared
to the baseline since all it will do is predict using the clos-
est samples rather than the boundary samples. The encod-
ing chain is more complex however as it must pick optimal
coefficients to transmit for the decoding chain. In the next
section we discuss an iterative quantization algorithm which
the encoder must carry out and derive rate-distortion optimal
quantization parameters.

2. COMPRESSION WITH NONORTHOGONAL
TRANSFORMS

Consider the random vector - (N x 1). For notational conve-
nience assume that the context prediction is absorbed within
x. The vector x is represented using the linear transform G
(N x N), whose columns g;, ¢ = 1,..., N form the trans-
form basis. Assume G is full rank but is otherwise general,
i.e., G is not necessarily orthogonal and g; are not necessarily
unit norm. We have

r = Ge, (10)

where ¢ (N x 1) are the transform coefficients. The coeffi-
cients are scalar quantized to yield ¢ = Q(c) which are then
entropy coded and transmitted to a decoder.

2.1. Quantization

The scalar quantization problem with respect to the nonorthog-
onal basis G where one aims to minimize the quantization
distortion can be written as,

|z — Gel*. (11)

While our work can accommodate a variety of quantizers for
compatibility with video coders [1, 2] we will assume

é= A (12)

where ¢ (N x 1) is a vector of integers and A is a diagonal ma-
trix of quantizer step-sizes, i.e., A; ; = \;0; ; with \; the ith
step-size and 0; ; is the Kronecker delta function. Equation
(11) hence becomes

|z — GAL|[?, (13)

which can be recognized as a lattice quantizer whose opti-
mal solution in terms of ¢ requires solving an integer problem
[7]. Many suboptimal techniques have been proposed for the
solution of (11) (e.g., [9, 4]). In order to accommodate fast
solutions we incorporate a method similar to [9, 4] where one
iteratively solves scalar quantization problems concentrating
on each coefficient in turn. Assume all coefficients except for
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the i*" coefficient have been quantized. The error vector can
be defined as

€ = T — E

{(k[1<k<N ki)

Ik Ch- (14)

Observe that without the integer constraint the distortion is
minimized by choosing the i*" coefficient to be
: 2 T T
¢ = argmin|le; —gidl|” = g; ei/(g; 9:)-  (15)

For the uniform de-quantization process in (12), it is easy to
see that the optimal quantized coefficient can be obtained as

¢ = Nround(ci/Ai) =U(e, gis M), (16)
assuming a nearest-neighbor encoding rule'. This leads to the
quantization algorithm,

Algorithm 1 (Quantization)

for n=1,2,... //until convergence

1. e =g —Gel (éo = éimt) //current error
2. for k=1,....N

(Cl) € = e + gkézil

(b) &" ZU(Gk,gk,)\k) //optimal ¢

//error when ¢ =0

n—1

(c) e = e+ gi(é) " — ™). //updated error

Observe that any change induced by step 2c is guaranteed to
reduce distortion. The algorithm is hence guaranteed to con-
verge with ¢! — &, — 0.

2.2. Optimal Quantizer Step-Sizes

Rate-Distortion optimal design of quantizer step-sizes is in
general a difficult problem since tractable expressions for rate
and distortion are codec dependent and hard to obtain. In this
section we use high rate approximations in order to optimize
the vector of step-sizes, A, used in (12).

Rate Constraint: The transform coding recipe followed by
successful image and video coders utilize scalar entropy
coders. Thus the rate required to convey the quantized coeffi-
cients in ¢ can be approximated as

R(E) =D H(e), (17
k

where H(.) denotes entropy. Since coefficient ¢; is scalar
quantized using the step-size \;, at high bit-rates one can in-
voke the approximation,

where h(c;) is the differential entropy of the continuously-
valued coefficient [10]. Hence in order to meet a rate con-
straint one needs,

Z log(Ag) ~ constant. (19)
k

IRelated non-nearest-neighbor encoding rules (e.g., offset”-based rules
of AVC/HEVC reference encoders) can also be straightforwardly derived.
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Distortion Expression: Had G been orthonormal, a straight-
forward approximation for average distortion in terms of A
would have been Dy, (A) = >, AZ/12, which is obtained
by assuming uniformly distributed quantization error [7].
With a nonorthogonal G, signal domain and coefficient do-
main distortions are not the same and one cannot use this
approximation. Assume all quantities are zero mean. The
signal domain average distortion can be written as

D(\) = EleTe] = Tr(Elee™)), (20)

where E[.] denotes expectation and T'r(.) is the trace of a
matrix and e = G(c — ¢). We have,

D(\) = Tr(GE[(c—¢&)(c—&)T)GT) @1
Tr(GE[pp"|GT) (22)

where we have set p = ¢ — ¢ to denote the coefficient domain
error. Assuming that coefficient domain error is decorrelated
we have that E[pp?] (N x N) is diagonal with,

TG,
Elpp")i; = { 0

Then straightforward algebra yields,

N N
D) = > > Gim. (24)

k=11=1

1=7
otherwise. (23)

It is important to note that since the quantization is carried
out through the quantization algorithm, approximations of the
form 7, = A7 /12 are not valid. In order to relate 7 to A let us
concentrate on the rounding error induced by the quantization
algorithm. At the point of convergence, using steps 2a and 2b
in conjunction with Equation (12) we obtain,

g}f(e+gkék))

e = /A = round(
(98 g1) M
gk €
= round(—="—— + i), (25)
(Qggk))\k
T
. . . . gi €
which leads to the rounding error satisfying |7(g;?;k) " | <0.5.
T
Setwy, = (gnggi ) and observe that if we assume that the round-
Lar
ing error is uniform we obtain,
El(gie/(9x 9x)*] = Elwi] ~ Xi/12. (26)
Let G be the matrix with the i*" column (g-_g;v) . We have
w=GTe=GTG(c—2). (27)
Letting H = GTG we obtain
HE[(c — ¢&)(c—¢)"JHT = HE[p|H”
= FElwwT]. (28)
Considering the diagonal elements of (28) leads to
N
> Him = Elwi] = Xi/12, (29)
1=1
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which is the expression we need that relates 7 to A. Let G and
H denote the matrices that have the matrix elements squared
of G and H respectively. Equations 24 and 29 become

D(N) u" Gm (30)
Hr = )\/12 31)

where  is the vector of all-ones and \; = \2.
Rate-Distortion Optimization: The optimization can be put in
the form of the minimization of average distortion (30) sub-
ject to the rate constraint (19) to obtain,

min {uT(_}w + v Z log()\k)} , (32)
k
such that 7 > 0, Hr = \/12.

In (32), v is a Lagrange multiplier enforcing the rate con-
straint and 7w > 0 is enforced since E[pp’] is a positive defi-
nite covariance matrix (Equation 23). Observe that (32) poses
a convex optimization problem which can be solved to yield
7 and \ using standard techniques” [11].

3. SIMULATION RESULTS AND CONCLUSION

We implemented our work within HEVC reference software
(HM-12.0) as a set of extra INTRA prediction modes. The
codec was augmented to transmit/receive overhead informa-
tion that signaled the usage of the new modes. Our results in-
clude this overhead. The reference and the augmented codecs
both used the same default INTRA main profile configuration
parameters. For each INTRA prediction mode we designed a
specific prediction matrix F' (Equation 6). This matrix is so
that INTRA prediction is repeated using the closest samples
rather than the boundary samples within each coded block.
We then constructed the nonorthogonal transform G = FT
(Equation 8) and obtained A through (32). For each coded
block quantized coefficients were obtained using Algorithm
1. Mode decisions and encoding of quantized coefficients and
overhead were handled using the reference software which
generated bit-streams similar to HEVC except for the addi-
tion of overhead bits.

We report results for standard test images (Figure 1) in
Table 1 (a) and on standard video sequences (30 frames com-
pressed) in Table 1 (b). As seen in Table 1 (a), the proposed
work obtains substantial improvements especially on images
with significant directional structure. The reader should note
that these improvements are over a state-of-the-art codec that
is already employing very high-performance INTRA predic-
tion and that we have not changed prediction weights, etc.
Video sequences benefit from the proposed work based on
the extent of directional singularities depicted. Gains are pro-
nounced on computer graphics and “screen content” (Table

2The unconstrained solution can be shown to be A; = A /~/ai, where
aT = «TGH™1/12. When this solution was not admissible we have ob-
served quick convergence using descent techniques.
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(d) image 4

(e) image 5 (f) image 6

Fig. 1. Test images.

1 (a), top) but reduced on classical sequences (Table 1 (b),
bottom) where HEVC INTRA prediction is already working
well. For each prediction mode the proposed work obtains
improvements, with the bulk of the gains coming from direc-
tional modes (modes 2-35 in HEVC). This is consistent with
earlier discussion regarding Gaussian processes.

4815

% Rate Gain % Rate Gain
image 1 12.0% Slide Editing 6.9%
image 2 13.0% China Speed 5.0%
image 3 11.6% Slide Show 4.1%
image 4 8.9% Foreman 1.3%
image 5 12.4% Mobile 1.3%
image 6 7.9% Flower 1.0%

(a) Images (b) Video

Table 1. Percentage rate gains (at constant distortion) the pro-
posed work obtains over HEVC (computed with aid of [12] at
QP =22,27,32,37).

We proposed a technique that incorporates changes in the
decoding chain to allow the decoder to make effective use
of all available decoded information, i.e., all decoded pre-
diction residuals, with marginal increases in decoding com-
plexity. Encoder complexity increases through application of
Algorithm 1, which is known to converge rapidly in typical
cases [9, 4]. We note that for the case of simple linear predic-
tion (as employed within AVC/HEVC) the algorithm further
simplifies due to simplifications in Equations 15 and 16. We
leave a full complexity analysis to another paper.

Our work primarily impacts pictures with significant di-
rectional structures and obtains substantial improvements
over a codec that is already targeting such structures with
mode-based predictors. Our future work will consider more
sophisticated linear and nonlinear predictors for further per-
formance improvements. Another interesting avenue is to
augment multi-resolutional coders that use directional pre-
diction [13].
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