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ABSTRACT

The spectral hashing algorithm relaxes and solves an objec-
tive function for generating hash codes such that data similar-
ity is preserved in the Hamming space. However, the assump-
tion of uniform global data distribution limits its applicabil-
ity. In the paper, we introduce locality preserving projection
to determine the data distribution adaptively, and a spectral
method is adopted to estimate the eigenfunctions of the under-
lying graph Laplacian. Furthermore, pairwise label similarity
can be further incorporated in the weight matrix to bridge the
semantic gap between data and hash codes. Experiments on
three benchmark datasets show the proposed algorithm per-
forms favorably against state-of-the-art hashing methods.

Index Terms— Hashing, visual search, image retrieval

1. INTRODUCTION

Large-scale image and video retrieval has attracted much at-
tention in recent years. Given a query, the simplest retrieval
method is to determine the k nearest neighbors by sorting
some similarity scores for the entire dataset. Obviously this
approach is impractical when the number of data is large or a
single similarity comparison is expensive. For effective and
efficient large-scale image retrieval, numerous hashing algo-
rithms have recently been introduced [1, 2, 3, 4, 5, 6, 7, 8].
The goal of hashing is to map high-dimensional data points to
low-dimensional binary codes for efficient search of nearest
neighbors in the Hamming space with linear time complexity.

One of the most effective approaches, the Locality-
Sensitive Hashing (LSH) [9] algorithm uses random pro-
jections to construct hash codes. The underpinning of the
LSH algorithm is that pairwise distance of data points can
be theoretically guaranteed to be preserved in the Hamming
space when the length of codes is sufficiently large. Kulis
et al. propose a kernelized LSH (KLSH) method [10] for
high-dimensional data when the feature embedding kernel is
unknown. In addition, several techniques based on LSH have
been developed for different distance metrics [11, 12]. On
the other hand, several methods solve the hashing problem
by optimizing different objective functions [13, 14]. One
effective method proposed by Weiss et al. uses spectral relax-

ation [14] to compute hash codes. Compared to LSH, these
approaches exploit data distribution to construct better hash
codes where the pairwise distance is considered in the objec-
tive function and preserved. Although the above-mentioned
unsupervised hashing approaches can be easily applied to
different domains without the need to label data, some under-
lying important properties are not exploited and lead to the
issues of semantic gap. Namely, when the data is mapped
to hash codes, data points with the same semantic meanings
may not have the same hash codes as the labels are not known
or used.

Several supervised or semi-supervised hashing meth-
ods [12, 15, 16, 17] have been developed to exploit pairwise
data labeled with similar or dissimilar attributes to leverage
semantic similarity. Based on the LSH method, Kulis et
al. use labeled samples to learn a Mahalanobis metric [12].
The semi-supervised hashing method [17] formulates an ob-
jective function which minimizes the empirical error of the
labeled data while maximizing the entropy of the unsuper-
vised term. Other methods such as binary reconstructive
embeddings (BRE) [15] and minimal loss hashing [16] aim
to learn hash codes by minimizing the reconstruction errors
between the semantic space and Hamming space. While su-
pervised methods have been demonstrated to achieve higher
retrieval accuracy, they usually entail solving complicated
optimization problems with high computational complexity.

In the paper, we focus on overcoming the limitations of
the assumption that the data points are uniformly distributed.
We propose a novel algorithm to exploit label information
with an objective function that can be solved by spectral meth-
ods efficiently. Within the spectral hashing (SH) [14] frame-
work, when approximating the eigenfunctions of the graph
Laplacian of data points, the global structure of data points
are modeled along the directions computed by principal com-
ponent analysis (PCA) to satisfy the uniform distribution as-
sumption. Since this assumption does not usually hold for
real-world image data, we incorporate the Locality Preserving
Projection (LPP) [18] method to exploit the local geometric
structure between data points. Moreover, to bridge the se-
mantic gap, we modify the weight matrix in LPP by adding
a pairwise label similarity term to better enforce the seman-
tic constraints of data points. We demonstrate the merits of
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the proposed algorithm with evaluations on three benchmark
datasets with comparisons to state-of-the-art hashing meth-
ods.

2. PROPOSED ALGORITHM

To explore local relationship of data points, we use the LPP
method [18] to project data along the directions that preserves
local neighborhood information for estimating the eigenfunc-
tions of the graph Laplacian. A spectral method with out-
of-sample extension based on SH is then used to minimize
the objective function for hashing. Furthermore, to preserve
the semantic similarity between data points, we construct the
pairwise label similarity matrix and incorporate it into the
weight matrix of the LPP method.

2.1. Objective Function for Hashing

To compute effective binary hash codes, similar data points
should be mapped to similar representations. Let {yi}ni=1 de-
note the list of binary codes with length m for n data points,
and L = D−A be the Laplacian matrix, whereA is the affin-
ity matrix, andDii =

∑
j Aij is a n×n diagonal matrix. The

affinity matrix is computed by Aij = exp(−‖xi − xj‖2/ε2),
where {xi}ni=1 is the original data list. The formulation to
generate hash codes can be written in a matrix form:

min trace(Y >LY ) (1)
subject to: Y (i, j) ∈ {−1, 1}

Y >1 = 0

Y >Y = I,

where Y is a n × m matrix whose i-th row is yi. The con-
straint Y >1 = 0 enforces each bit has a 50% chance to be
one or zero, and the constraint Y >Y = I enforces the bits
are uncorrelated.

However, this formulation is equivalent to a graph parti-
tioning problem which has been shown to be NP hard. To
relax the problem in (1), the constraint Y (i, j) ∈ {−1, 1}
can be removed, and the solution can be found by comput-
ing the m eigenvectors of L with minimal eigenvalues. Al-
though the above problem can be solved efficiently after the
relaxation, only the binary codes in the training set can be
computed. Nevertheless, this out-of-sample problem can be
solved by the approximation of eigenfunctions [14]. Assum-
ing that the eigenfunctions of the one-dimensional Laplacian
are uniformly distributed on [a, b], the eigenfunctions φm(x)
and eigenvalues λm are:

φm(x) = sin(
π

2
+

kπ

b− a
x), (2)

λm = 1− e−
ε2

2 ‖
kπ
b−a‖

2

. (3)

2.2. Locality Preserving Hashing

In this work, we address two main issues of the current unsu-
pervised hashing methods. First, when estimating the eigen-
functions of the graph Laplacian along PCA directions, only
global structure of the data is captured rather than local neigh-
borhood information. Second, while recent supervised hash-
ing methods use pairwise label similarity to close the seman-
tic gap, unsupervised methods do not exploit such informa-
tion. Hence, we propose the Locality Preserving Hashing
(LPH) method, which can be easily extended to the semi-
supervised learning setting. The steps to compute LPP for
the proposed LSH method are as follows:

1. Construct the adjacency graph: Let G denote the
graph of the data, in which every node is connected to
its k nearest neighbors to define edges.

2. Compute the affinity matrix: Let W be a matrix
based on the graph G, Wij = exp(−‖xi − xj‖2/2σ2)
if two nodes i and j are connected, and otherwise
Wij = 0.

3. Compute the eigenmaps: Compute the eigenvectors
and eigenvalues for XLX>, where L = D −W is the
Laplacian matrix and Dii =

∑
j Wij .

In essence, the LPP method finds a linear mapping from
nonlinear Laplacian eigenmaps, while preserving the local
neighborhood information. From the directions constructed
by LPP, we choose the m directions with the minimal eigen-
values to locally represent the data distribution for better
estimation of eigenfunctions.

In this work, the weight matrix W is incorporated with
the pairwise label similarity to better describe the affinity of
data points:

Wij = (1− λ) exp(−‖xi − xj‖2/2σ2) + λSij , (4)

where S is the label similarity matrix and λ controls the im-
portance of pairwise label similarity. We define Sij is equal
to 1 if xi and xj have the same label, and otherwise it is equal
to 0.

The weight matrix in (4) does not only consider the data
distribution but also the semantic similarity. It penalizes the
cases where two data points with the same label happen to
have large distance. Note that as we only use a subset of la-
beled data, our approach with the pairwise similarity can be
considered as a semi-supervised method, but can be computed
efficiently as unsupervised hashing methods. The main steps
of our algorithm are summarized as follows:

1. Compute LPP: Use LPP to find directions that pre-
serves local relation of data points.

2. Compute eigenfunctions: Along each LPP direction,
approximate the m eigenfunctions of the graph Lapla-
cian with the m smallest eigenvalues using (2).

3. Compute hash codes: Threshold the eigenfunctions at
zero to obtain the final binary codes.
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2.3. Discussion

To gain more insight on how LPH works with LPP, we discuss
the relationship between PCA and LPP. Let Wij = 1/n2,
we show that XLX> in the third step of LPP is equal to the
covariance matrix for computing PCA.

XLX> = X(
1

n
I − 1

n2
ee>)X>

=
1

n
XX> − 1

n2
(Xe)(Xe)>

=
1

n

∑
i

xix
>
i −

1

n2
(nm)(nm)>

=
1

n

∑
i

xix
>
i − 2mm> +mm>

= E[(x−m)(x−m)>],

where m = 1
n

∑
i xi is the data mean, e is a vector with all

elements of 1. This shows that the weight matrix W plays a
key role in LPP. When the graphG is fully connected with the
proper Wij , XLX> is the covariance matrix of the data.

Another way to analyze LPP is to determine the value of
k for nearest neighbors when constructing the graph G. If k
is large, Wij tends to preserve the global structure (as PCA),
and if k is sufficiently small, the data is projected along the
directions preserving locality which have the minimal local
variance.

3. EXPERIMENTAL RESULTS

We conduct image retrieval experiments on the CIFAR-10,
CIFAR-100 and PASCAL VOC 2010 datasets, and evaluate
our proposed method against state-of-the-art methods. In
addition, we compare the results with and without using the
proposed pairwise similarity matrix (i.e., in semi-supervised
or unsupervised settings). For quantitative evaluation, we
adopt the commonly used Hamming ranking with 8 to 64
bit hash codes. Given a query image, all the data points are
ranked according to their Hamming distance to the query.
We report the mean precision and precision-recall curves of
Hamming ranking with comparisons to SH [14], KLSH [10],
and BRE [15] algorithms using the original implementations.

CIFAR-10. The CIFAR-10 dataset is a subset of 80 million
tiny images [19] with labels. It consists of 60K 32 × 32 im-
ages of 10 object categories represented by 512-dimensional
GIST features. The entire dataset is uniformly partitioned
from 10 classes into a training set of 59K images, and a test
set of 1K query images. We select 200 images from each
class randomly for samples for methods involving kernels.
The pairwise label similarity is also obtained from this 2K
training subset. We use k = 100 for nearest neighbors for
experiments with this dataset.

CIFAR-100. The CIFAR-100 dataset is also a labeled subset
of 80 million tiny images, containing 100 classes with 600
images each. The entire dataset is uniformly partitioned from
100 classes into a training set of 59K images, and a test set
of 1K query images. For the training subset, 20 images from
each class are randomly selected with a total of 2K samples.
The same parameters are used as for the CIFAR-10 dataset.

PASCAL VOC 2010. The PASCAL VOC 2010 [20] dataset
is widely used for object recognition tasks. It contains 20
classes with about 10K images where each one has one or
more labels from different object categories. Different from
the other two datasets, it has more complicated variations of
object appearance with view-point changes, occlusions, and
cluttered background regions.

The entire dataset is uniformly partitioned from 20 classes
into a training set of around 9k images, and the remaining
ones are used for tests. For the training subset, 20% of im-
ages from the training set are randomly selected. To better
account for large appearance change across images, we ex-
tract features using bag-of-words SIFT histograms with 1024
dimensions for each image, and use k = 500 for nearest
neighbors to construct the weight matrix.

Results. As shown in Fig. 1, the proposed LPH algo-
rithms, with and without using labeled data, perform fa-
vorably against other hashing algorithms in all three datasets.
The LSH and KLSH methods perform worse than all the
other methods, which can be attributed to the fact that LSH-
based hashing methods usually require longer hash codes
for accuracy due to the use of random projections. We use
λ = 0.9 to control the weight for label similarity S in all the
experiments and the proposed LPH method performs better
when the weight matrix W is constructed using (4). This
also demonstrates the label similarity facilitates closing the
semantic gap of data points and hash codes as the semantic
similarity is more reliable than data similarity.

For the CIFAR-10 dataset, the proposed LPH method per-
forms well (with and without label similarity) against the SH,
KLSH, and LSH methods. However, in the precision-recall
curve (Fig. 1(b)), the LPH method without using labeled data
performs similarly to the one using pairwise label similarity.
Unlike other semi-supervised hashing methods which use la-
beled data in the objective function, our label information is
only used for adjusting the data distribution and estimating the
eigenfunctions. In some simpler datasets such as CIFAR-10,
the LPH method does not gain additional information from
labeled data. On the other hand, the proposed LPH algorithm
using labeled data performs best in the challenging CIFAR-
100 dataset since it has more object classes and the label sim-
ilarity is likely to play a more important role. The merits of
semi-supervised LPH approach can be clearly observed in the
precision-recall curve of Fig. 1(d).

For the PASCAL VOC 2010 dataset, both proposed meth-
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(a) (b) (c) (d) (e)

Fig. 1. (a) CIFAR-10: precision of the top 500 returned samples; (b) CIFAR-10: precision-recall curve with 64 bits; (c) CIFAR-
100: precision of the top 50 returned samples; (d) CIFAR-100: precision-recall curve with 64 bits; (e) VOC 2010: precision of
the top 50 returned samples.

Fig. 2. Qualitative results on CIFAR-10 with top 10 returned images using 64 bits. (a) Query images; (b) LPH with labels; (c)
LPH without labels; (d) SH.

Fig. 3. Qualitative results on CIFAR-100 with top 10 returned images using 64 bits. (a) Query images; (b) LPH with labels; (c)
LPH without labels; (d) SH.

ods perform well against the SH and BRE methods (Fig. 1(e)),
but LPH tends to perform better than BRE when the hash
code length is small. This results suggest that by using LPP,
especially for images with large variations, the m directions
(bits) with minimal eigenvalues can preserve most of the en-
ergy for data’s local distribution. Note that since each im-
age may have multiple labels, precision is computed based
on whether the query and the returned images share at least
one common label (same definition as the pairwise label sim-
ilarity). Fig. 2 and Fig. 3 present some retrieval results us-
ing different hashing methods. The proposed LPH method
with labels retrieve more consistent results than LPH with-
out labels and the SH method. More results and large images
are available at https://sites.google.com/site/
yihsuantsai/research/lph/.

4. CONCLUDING REMARKS

In this paper, we propose a hashing algorithm which accounts
for the local relationship between data points using LPP. The
proposed method is extended in a semi-supervised fashion by
incorporating the pairwise label similarity in the weight ma-
trix. The proposed LPH method with labels can be easily
trained via a spectral solver. Experimental results show that
the proposed algorithms, with and without label information,
perform favorably against state-of-the-art hashing methods on
three benchmark datasets.

Our future work includes exploring other methods to ap-
proximate eigenfunctions that are not limited to the uniform
data assumption. In addition, it is of great interest to exploit
local structural information for supervised hashing methods.
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