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ABSTRACT

In this paper, a novel warping-based retargeting approach for
stereoscopic video is proposed. It considers the three conflict-
ing goals: preserving salient image content, avoiding flick-
ering and maintaining consistency between the two views.
The first step of the approach focuses on content-aware im-
age resizing and considers image saliency, motion saliency,
and depth saliency. In the second step, temporal coherence
is preserved by tracking and optimizing deformed pathlines.
The proposed algorithm maps the mesh from the left to the
right view to guarantee consistency between the deformation
of objects between the views. Users rated the quality of the
adapted videos as good. In particular, distortions in the per-
ceived depth are not noticeable, and the temporal stability is
significantly higher compared to seam carving approaches.

1. INTRODUCTION

In recent years, multiview video has been getting increas-
ingly popular in the entertainment sector in the form of stereo-
scopic video. With stereoscopic cinemas, televisions, and
the Nintendo 3DSTM, a lot of commercial products that can
present this kind of visual content have become available.
However, stereoscopic movies are produced in a fixed aspect
ratio. In order to display these videos on devices with a dif-
ferent screen resolution, the videos need to be retargeted in a
way that preserves the shape and motion of visually important
objects and regions.

Two different video retargeting approaches have been de-
veloped that produce good results. They are seam carving
and warping. However, out of the two approaches, only seam
carving has been applied to the retargeting of stereoscopic
video [1]. This paper proposes a method for retargeting of
stereoscopic video based on warping.

Seam carving [2] removes horizontal or vertical paths of
connected pixels from within the image. These paths are
called seams. The goal is to remove seams that will not be
noticed by the viewer. Several optimizations have been pro-
posed, e.g., seam carving for videos [3, 4, 5], using an im-
proved energy map to preserve important image content [6,
3], novel saliency detection algorithms for stereoscopic video
[7], or an efficient GPU implementation that allows real-time
video retargeting with seam carving [8]. Utsugi et al. [9] use

seam carving for stereoscopic image retargeting. The left
view is used as a reference image where most of the resiz-
ing is done. Information from the right view is integrated
and the seams are then moved to the right view via dispar-
ity map. Seam carving is also used by Basha et al. [10]. A
seam is searched in both views simultaneously with regard
to geometric constraints to prevent distortions in appearance
and depth of an image. Guthier et al. [1] present the first sys-
tem that uses seam carving for stereoscopic video. The work
builds upon concepts from image-based stereo seam carving
as well as video-based monoscopic seam carving. The energy
function used is composed of an appearance term to avoid
artifacts in the frame, a disparity term that incorporates 3D
information, and a temporal term that reduces flicker in the
resulting video. An overview of video retargeting techniques
is presented by Kopf et al. [11].

Warping places a rectangular grid mesh over the image
and deforms it in a way such that important regions in the im-
age are resized homogeneously while non important regions
are allowed to be stretched or squeezed. The goal is to find
a mapping that warps the mesh from the source resolution to
the target resolution. An optimization problem is formulated
with the corner points of the quads being the unknown vari-
ables. Fig. 1 (e) shows an example of a warped mesh.

Wang et al. [12] proposed an image warping algorithm
that considers image saliency such that non salient quads are
distorted more. In addition, a grid line bending energy term is
introduced because warping of quads that is based solely on
saliency can lead to excessive shearing of the edges. Yoo et
al. have extended warping to stereoscopic images [13]. They
place a rectangular grid mesh over the left view of the im-
age. To find the corresponding mesh in the right view, they
perform vertex matching on a multi-scale level. To preserve
image depth during retargeting, every node that is shifted into
one direction on the x-axis in the left view is shifted by the
same amount and direction in the right view.

When warping is used for video retargeting [14], time-
dependent constraints need to be taken into account in order
to avoid introducing temporal artifacts. Wang et al. [15] use
an optimization over the entire video cube to produce tempo-
ral coherent and content-aware resizing. A new energy term
based on camera and object motion is added to the frame re-
sizing energy to preserve temporal coherence.
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(a) original frame (left and right view) (b) saliency map (c) linear (d) warped (e) warped mesh

Fig. 1. Reducing the width of the Flower video by 50%. (a) shows an original left and right view of a frame and (b) shows its
saliency. This video was retargeted by linear scaling (c) and warping (d). (e) illustrates the target mesh after warping.

The main contribution of this work is an algorithm that
automatically warps a stereoscopic video to fit different dis-
play sizes. None of the approaches mentioned above consider
stereoscopic videos, and only the technique presented by Yoo
et al. considers stereoscopic images [13]. Since their tech-
nique was developed for images, Yoo et al. only use disparity
and image intensity, but not motion as an indicator for vi-
sual saliency. Our saliency detector is composed of image
saliency, motion, and depth information. We also present a
pathline tracking and optimization algorithm for stereoscopic
videos which allows us to balance between the conflicting
goals of preserving salient image content and avoiding flick-
ering artifacts.

The outline of the paper is as follows. The next section
describes the proposed algorithm for the warping of stereo-
scopic videos. In Section 3, the quality of the proposed algo-
rithm is evaluated. Section 4 concludes the paper.

2. RETARGETING OF STEREOSCOPIC VIDEO

This section describes our algorithm for warping-based re-
targeting of stereoscopic video. It focuses on three partially
contradicting aspects of the retargeting process. They are:

• Resizing frames while preserving important content
• Preserving temporal stability to avoid motion artifacts
• Maintaining consistency between left and right view

The basis for warping is one rectangular grid mesh M =
(V,E, F ) for each view of each frame. V is a set of vertices
vi ∈ R2 which are the corner points of the rectangular grid.
E is a set of directed edges (i, j) that connect each vertex to
its four neighbors to form the grid. F contains the faces (or
“quads”) of the grid. A face f ∈ F is defined by the indices
of its four corner vertices. Only the sets of vertices differ
between the views. By our notation, a vertex vLi in the left
view corresponds to the vertex vRi in the right view with the
same index i. To avoid clutter, we omit the superscripts L and
R unless required for better understanding.

The goal of warping a frame is now to find new vertex
positions v′i ∈ V ′ in a target frame with a different resolution
such that the important areas are preserved as well as possi-
ble. For this purpose, we formulate and solve an optimization

problem consisting of energy terms that take the three aspects
into account. This is the main focus of this paper. The 2D
locations of the target vertices are the unknown variables that
are being optimized. Once new vertex positions are known for
every frame of the video, the pixels of each quad of the orig-
inal video are transformed into the deformed quads to warp
the video.

To achieve the goals mentioned above, the algorithm
works in three sequential steps which are described in the
following three sections. Warping is first performed on each
frame individually. This is done in a way that preserves the
important content in the best way possible while completely
ignoring temporal consistency. As a second step, the motion
of the original video is compared to the motion after warp-
ing. The difference is temporal inconsistency. We thus find
a trade-off between the content-preserving warp and consis-
tency with the motion in the original video. Based on this
trade-off, the video is warped again in the third step.

In order to judge the relevance of each pixel in the stereo-
scopic video, we compute a saliency map using the approach
presented by Dittrich et al. [7]. The left and right mesh is
placed over the saliency map respectively in order to deter-
mine the saliency of the quads.

2.1. Content-Aware Warping

In the first step, the video is warped in a content-aware man-
ner frame by frame while temporal consistency is ignored.
The vertices v′i ∈ V ′ of the warped mesh are determined by
minimizing an energy function with the v′i being the unknown
variables. The target energy function consists of several en-
ergy terms that are explained in the following.

Quads with a high saliency contain important image con-
tent and should thus be scaled uniformly. We define an energy
term that measures the difference between the deformed quad
and a uniformly scaled version of it. In an optimal case, there
exists an unknown scaling factor sf for each quad face f ∈ F ,
such that for each vertex vi in the quad, v′i = sf ·vi+t, where t
is a constant translation vector. The quad deformation energy
of the left mesh is then defined as

dq(f) =
∑

(i,j)∈E(f)

||
(
v′i − v′j

)
− sf (vi − vj) ||2 (1)
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where E(f) denotes the set of edges surrounding quad f .
This energy term becomes smaller, the better the four vec-
tors of a quad agree on a single scaling factor sf . To add
saliency information into the energy term, the energy of a
single quad f is weighted by its quad saliency wf as Dq =∑

f∈F wf · dq(f). This definition as well as (1) were taken
from [12]. In order to apply the energy term Dq to stereo-
scopic video, it must be formulated for the left and the right
view. The result is two values DL

q and DR
q that represent the

quad energy of the left and the right view, respectively. The
total quad energy Dq is the sum of DL

q and DR
q [13].

To preserve the consistency between the left and right
view, the energy term of Yoo et al. [13] is used. It becomes
smaller, when vertices vLi from the left mesh get deformed in
a way similar to the corresponding vertices vRi . This can be
expressed as:

Dd =
∑
i

||
(
vLi − v′Li

)
−
(
vRi − v′Ri

)
||2 (2)

To obtain the two target meshes of a frame, the sum of the
quad and the disparity energy is minimized. The target energy
function is thus D = Dq + Dd. Our minimization approach
is very similar to the one used in [12].

2.2. Motion Analysis

Now that the input video has been warped by a frame-by-
frame approach, we compare the motion in the warped video
to the motion of the original one. Instead of computing the
full optical flow of the video, it is sufficient to only track the
motion of individual points. We refer to the motion of these
points through the video as pathlines. In a video that was
scaled by the same factor for every frame, all pathlines un-
dergo the same transformation. However, in a video that was
warped, this may not be the case. Inconsistency between the
pathlines in the warped video causes temporal artifacts like
flicker. Therefore, this step of the algorithm calculates a set
of optimized pathlines. These optimized pathlines are a com-
bination of the deformed pathlines and pathlines of the input
video. This approach is taken from [16].

Let P denote the set of all pathlines in the original
video. Each pathline Pi ∈ P is a sequence of pixels
Pi = (p1

i , p
2
i , . . . , p

T
i }, with pti = (xti, y

t
i) being the loca-

tion of the pathline pixel in frame t. T is the number of
frames in the video. The pathline index i indicates that the
vertex vi in the first frame with the same index was used as
a seed. Two pathlines Pi and Pj are adjacent to one another
if their seeds vi and vj are adjacent in the first frame, i.e.,
(i, j) ∈ E.

Ideally, to achieve temporal consistency, the video would
be warped in such a way that the original Pi would be scaled
uniformly. This means that all offsets pti − ptj between adja-
cent pathlines should undergo a scaling, expressed as a mul-
tiplication by a scaling matrix Sij ∈ M(2 × 2,R). Using
this criterion, the new pathlines p̂i ∈ P̂i after warping can be

calculated by minimizing the energy term

Ep =
∑

(i,j)∈E

T∑
t=1

||(p̂ti − p̂tj)− Sij(p
t
i − ptj)||2 (3)

for the unknown variables Sij and p̂ti.
Note that there are a large number of variables p̂ti (one

tuple per frame per vertex). In order to reduce the number of
variables to optimize for, the deformed pathline P̂i is modeled
by scaling and translating the original one:

P̂i = SiPi + ti (4)

Here, Si is a 2 × 2 matrix and ti is a translation vector. If
this is applied to every pathline, the reduced model only con-
tains one unknown scaling matrix and one unknown transla-
tion vector per pathline. Equation 3 can then be rewritten as:

Ep =
∑

(i,j)∈E

T∑
t=1

||
(
(Sip

t
i + ti)− (Sjp

t
j + tj)

)
−Sij(p

t
i − ptj)||2 (5)

This energy term encourages the warp to scale the pathlines
uniformly leading to perfect temporal consistency (ignoring
the importance of content). By applying the warp that was
determined in the previous content-aware step to the pathlines
Pi of the original video, they are warped into new pathlinesP ′

i

that may be temporally inconsistent. The ideal pathlines P̂i

should be a compromise between temporal consistency and
content-awareness. The latter can be formulated by an energy
term that aims to reduce the distance between the ideal path-
lines P̂i and the content-aware ones P ′

i . By using Equation 4,
this can be expressed as

Ec =
∑
i

T∑
t=1

||(Sip
t
i + ti)− p′ti ||2 (6)

Equation 5 and 6 are then combined [16] to yield the final
pathline consistency energy E = Ep + λEc, where λ is a
balance factor to balance between temporal consistency of the
pathlines and content-awareness. E is minimized to solve for
Si, Sj , Sij , ti, and tj . The obtained variables can be used to
calculate the optimized pathline according to Equation 4.

2.3. Temporally Consistent Warping

The video is now warped again using the optimized pathlines
P̂i as guide points. When warping frame t, we would like the
vertices vi to get deformed according to the positions p̂ti of
the optimal pathlines at time t. We thus add an energy term to
the objective function [16] of frame t: Dp =

∑
i ||p̃ti − p̂ti||2

where p̂ti is the optimized pathline point in frame t and p̃ti
is the final pathline point position which is unknown. The
unknown pathline point can be expressed in terms of the quad
it lies in by averaging the four surrounding vertices: p̃ti =
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Fig. 2. Warped frame of the bouquet sequence without (left two frames) and with pathline optimization (on the right).

Table 1. Parameters of the test videos
video original size target size number of frames

car 600× 240 300× 240 450
flower 720× 262 360× 262 260
moon 640× 480 1280× 480 80
person 640× 360 320× 360 225

bouquet 640× 360 1280× 360 375

∑
k∈Φ(pt

i)
1
4 · v

′t
k where Φ(p̃ti) are the indices of the vertices

that surround p̃ti. Now the energy term can be written as

Dp =
∑
i

||
∑

k∈Φ(pt
i)

1

4
· v′tk − p̂ti||2 (7)

v′ are the unknown final vertex positions in this energy term.
This term is formulated once for the vertices in the left view
and once for the right view. The resulting energy term is the
sum of the terms for the two views. Now DP is added to the
target energy function: D = Dq + Dd + λDp. Here, λ is
the same weighting factor as above. D is used as the final
objective function to determine the final vertex positions for
warping.

3. EVALUATION

To evaluate the visual quality of the implemented warping al-
gorithm, we used five stereoscopic video sequences1 (see Ta-
ble 1). The width of each video is either reduced or increased
by a factor of two. They were presented to eight test viewers
wearing 3D shutter glasses. Two resizing approaches were
compared: framewise warping (see Section 2.1) and tempo-
rally consistent warping with optimized pathlines (see Sec-
tions 2.2 and 2.3). The retargeted videos were shown in ran-
dom order next to the original one for reference. The size of
the quads was 20× 20 pixels and λ was set to 1

4 .
Both methods preserve important image content equally

well and no user complained about important regions being
removed. Fig. 1 shows warping results of the flower video.
The flower blossom is clearly salient (Fig. 1b) and the quads
that are placed over the flower blossom maintain their aspect
ratios relatively well (Fig. 1e).

Most users noticed temporal inconsistencies in at least
some of the videos. This is a general problem with video

1car, flower: www.stereomaker.net/sample/; person, bouquet:
http://sp.cs.tut.fi/mobile3dtv/stereo-video/; moon: www.youtube.com

retargeting [1]. Noise leads to differing saliency maps in two
consecutive frames which causes changes of the retargeting
parameters and results in flicker. Such undesirable artifacts
immediately attract the attention of the viewer because the hu-
man eye is highly sensitive to motion. Major temporal defects
were noticed in both versions of the person sequence. The
background in the video is highly structured but not marked
as salient. A lot of waving in the background was observed
by almost all users. Except for this sequence, which produces
a large number of visual defects with both methods, tempo-
rally consistent warping with pathline optimization leads to
comparable or significantly better results. This is because the
optimized pathlines stabilize the motion of the quads. This
becomes evident from the users’ comments about the bou-
quet video (see Fig. 2), where a man enters the scene to work
on a bouquet of flowers. Due to the colorful flowers, the con-
trast saliency of the man’s face is low and the face thus gets
deformed heavily by the framewise warping algorithm. How-
ever, when considering the motion of the face, it becomes
temporally salient. The tracked pathlines then stabilize the
quads, which was perceived as a decrease of artifacts.

To measure the run-time2, the width of the flower video
has been doubled. With a computation time of 6.56 seconds
per frame, 88.5% of the overall time is spent for solving the
optimization problems. We use the NLopt library3 from MIT
for this task. This high computational load is caused by the
large number of vertices and the 20 alternating optimization
steps. The computation time of pathline tracking (5.6%) and
image warping (3.2%) is significantly lower. All the other
computations like saliency, disparity, I/O operations, or SURF
feature matching for detecting corresponding vertices in the
left and right view as well as in following frames require less
than 3%.

4. CONCLUSIONS

In this paper, a warping-based system that automatically re-
targets stereoscopic videos was presented. The video is first
warped frame by frame by using a saliency map. By ana-
lyzing the motion in the video before and after framewise
warping, optimized motion pathlines are computed. These
optimized pathlines are used as guide points during the final
temporally stable warping step.

2Intel Core i7-3770, 4 GB RAM, Windows 7 (32 bit)
3http://ab-initio.mit.edu/wiki/index.php/NLopt
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