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ABSTRACT
We propose a novel approach for stationary foreground detection in
crowds based on the spatio-temporal evolution of multiple features.
A generic framework is presented to detect stationarity where his-
tory images model the spatio-temporal feature patterns. A feature is
proposed based on structural information over each pixel neighbor-
hood for dealing with shadows and illumination changes. A multi-
feature detector is composed by combining the history images of
three features (namely, foreground, motion and structural informa-
tion) to estimate the foreground stationarity over time, which is later
thresholded to detect stationary regions. Experimental results over
challenging video-surveillance sequences show the improvement of
the proposed approach against related work as structural information
reduces false detections, which are common in crowded places.

Index Terms— Stationary foreground detection, structural sim-
ilarity, illumination changes, shadows, video-surveillance

1. INTRODUCTION

Automatic video-surveillance is an active research area due to the
increasing society’s concern about security in public crowded areas.
In this domain, detecting stationary foreground regions becomes cru-
cial to identify potential objects of interest in many high level appli-
cations such as abandoned object detection [1][2]. Stationarity is de-
fined as an object, person or group of people remaining stopped after
previous movement. Static foreground detection approaches tend to
use Background Subtraction (BS) techniques to detect foreground
by comparing frames against a model of the scene’s background [3].
They exhibit limitations when operating in crowded environments,
adapting to fast illumination changes (causing false detections) and
keeping stationary objects as foreground due to their absorption into
the background model. Such detection approaches employing back-
ground subtraction must develop strategies to handle these issues.

State-of-the-art approaches apply different techniques over fore-
ground data to determine stationarity via binary masks. Temporal
foreground accumulation is often used [4][5] to address occlusions.
However, it requires efficient handling of illumination changes by
the BS model and presents false positive detections when continu-
ous motion occurs, which is common in crowds. Recent approaches
combine such accumulation with motion information to deal with
high density motion areas [6] and illumination changes [7]. Fur-
thermore, edge analysis can be used to remove wrong detections
due to ghost effects (uncovered background due to moving objects
that were static during BS training) [8]. Temporal sampling of fore-
ground masks is widely used [9] which can be also combined with
motion [10]. Nevertheless, their major drawback lies in the selection
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of the sampling frequency which has a direct impact on performance.
Dual BS approaches [11][12] adapt to slow illumination changes.
However, missed and false detections frequently occur in dual BS
due to, respectively, undesirable updates of static regions and wrong
initialization of the BS model. In [13][14] such limitations are solved
by including a finite-state-machine to model pixel history values
and using edge information. In [15] several filters (motion, tem-
poral, appearance and edge) are applied to detect stationarity. Fi-
nally, some approaches detect stationarity through the relations be-
tween the states of BS models based on Mixture-of-Gaussians [16]
whilst dealing with ghost detections [17] and illumination changes
[18][19]. In summary, state-of-art approaches combine different fea-
tures to cope with BS limitations in crowds. However, the high rate
of false detections limits their use in crowded environments.

We present an approach to detect stationary foreground which
accumulates spatio-temporal features to address the aforementioned
limitations in crowds. Its contribution is twofold. First, it extends
[6] by proposing a generic framework to combine multiple features
operating with standard BS models. Second, it introduces a new
feature based on Structural Similarity (SSIM) [20] which increases
the robustness against illumination changes. Then, a multi-feature
stationary detector is created by combining the spatio-temporal evo-
lution of such structural feature with existing foreground and motion
features [6]. Unlike other approaches, this proposal faces many chal-
lenges in crowds such as occlusions, high dense situations, shadows
and illumination changes. Results demonstrate that the structural
feature reduces the false positive rate and the performance increase
of the multi-feature detector as compared to the state-of-the-art.

The structure of this paper is as follows. Section 2 describes
the multi-feature stationary detection framework. Section 3 presents
the structural feature and Section 4 briefly overviews the proposed
multi-feature approach. Experimental results are discussed in Sec-
tion 5. Finally, Section 6 summarizes the main conclusions.

2. FRAMEWORK

This section describes the framework to detect stationary foreground
via temporal evolution of multiple features, which generalizes the
two-feature combination of [6]. Figure 1 presents the proposed
framework. For each feature, two common stages take place: Fea-
ture Map (FM) extraction and History Images (HI) computation.
Then the Combination & Thresholding stage combines the feature
results to obtain the Stationary Foreground Detection mask.

This framework starts by extracting N Feature Maps FMfi
t (x)

from each frame It of the video sequence at time t:

FMfi
t (x) = g(It(x)), (1)

where x is a 2D pixel location, fi (i = 1, ..., N) are the N features
and g(·) describes the process to generate the feature map. Note that
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Fig. 1. Overview of the stationary detection framework.

g(·) can represent an extraction process of diverse nature such as a
BS approach [21], scene motion [10] or structural information [20].

Then, feature maps are accumulated over time to compute the
History Image HIfit (x) of each feature:

HIfit (x) = HIfit−1(x)+
[
wfi

p · FMfi
t (x)

]
−
[
wfi

n · (∼ FMfi
t (x))

]
,

(2)
where wfi

p and wfi
n are two weights to manage the contribution of

FMfi
t (x) toHIfit (x) for each feature fi. By default, everywfi

p and
wfi

n should be set to 1 (or the current value ofHIfit−1(x)) to increase
(or reset) the History Image for each feature fi. Thus, HIfit (x)
represents the number of consecutive frames maintaining the desired
feature in FMfi

t , which measures stationarity at pixel-level.
Subsequently, History Images are computed for each feature and

normalized to the range [0,1], considering the video framerate (25
fps) and the stationary detection time (tstatic = 20 seconds) to obtain
the maximum value when the feature fi is present for tstatic consec-
utive seconds: HIfit (x) = min

{
1, HIfit (x) / (fps · tstatic)

}
.

Then, a Stationary History Image (HISt ) is obtained as combi-
nation of allHIfit to model their joint stationary variation over time:

HISt (x) = h
(
HIf1t (x), ..., HIfNt (x)

)
, (3)

where h(·) defines the combination rule of the N feature maps such
as the mean [6] or sampling [10] rules, which depend on the appli-
cation and reliability of the features considered.

Finally, the Stationary Detection Mask, SFGt(x), is computed
by thresholding HISt (x):

SFGt(x) =

{
1 if HISt (x) ≥ η
0 otherwise

, (4)

where η should be 1 to trigger detections after tstatic seconds and
HISt (x) = 1 means that every HIfit (x) is stationary for the ana-
lyzed pixel x, thus SFGt(x) is set to 1.

3. STRUCTURE SIMILARITY FEATURE

The main features used for stationary detection (foreground and mo-
tion) do not handle illumination changes, limiting their efficiency.
This section presents the proposed feature to address such problem.

We propose to use structural information via the Structural Simi-
larity (SSIM) feature [20], originally developed for image quality as-
sessment (i.e., between modified and distortion-free images), return-
ing value 1 for highest quality. SSIM compares two images (a, b)
using three components; luminance l, contrast c and structure s:

SSIM(a, b) = l(a, b) · c(a, b) · s(a, b), (5)

and computes every component over each pixel neighborhood, thus
providing a SSIM map at pixel level. We obtain this SSIM map for

1.a 1.b 1.c 2.a 2.b 2.c

Fig. 2. SSIM map (c) between frame (a) and background (b) patches,
where the examples are: (1) an illumination change and (2) an object
with its shadow. Dark blue (red) refers to min (max) SSIM scores.
In example 1, SSIM (1.c) has high similarity scores despite the dif-
ferent illumination of frame (1.a) and background (1.b). In example
2, SSIM (2.c) has high (low) values in the shadowed (suitcase) area
when comparing frame (2.a) and background (2.b).

stationarity detection by comparing the current frame and the back-
ground model of [21]. Such comparison determines which pixels
belong to object (or background) due to their different (or equal)
structure to the background model. Figure 2 shows that SSIM iden-
tifies shadows and illumination changes areas as background, having
high scores when comparing current frame and background.

The proposed structural information feature, Region SSIM map
(RSIMM), is the mean of the SSIM map over a square window of
size Q × Q centered at the pixel under analysis (minimum score
is bounded to zero). The mean operation is applied to handle the
performance decrease of SSIM when after an illumination change,
the color is locally saturated. The higherQ the higher the robustness
against saturation but the lower the precision. We have selectedQ =
12 experimentally as a good balance between both saturation and
precision. We compute the structural Feature Map as:

FMST
t =

{
1 if RSSIMt ≤ τ
0 otherwise

, (6)

where τ = 0.5 is a threshold to get a normalized map where
FMST

t = 1(0) when RSSIMt ∈ [0, 1] is under (over) τ .

4. MULTI-FEATURE STATIONARY DETECTION

We compose a multi-feature stationary foreground detector by com-
bining foreground, motion and structural information (thusN = 3 in
Figure 1). The Foreground feature (FG) can be extracted via any BS
approach. We use [21] for considering pixel neighborhood and noise
level to detect foreground. FG presents many false positives when
continuous motion or BS problems exist. The Motion feature (MO)
is computed using median filters over temporal sliding windows as
described in [6]. Unlike the classical inter-frame difference motion
extraction, MO handles situations where stationary objects are con-
tinuously occluded by high motion, removing false detections while
keeping such objects. The proposed structural feature (ST) adds ro-
bustness against illumination changes and shadows, which mainly
affect the foreground map. ST compares each new frame against the
background model created by [21].

We apply the framework described in Section 2 to obtain three
feature maps (FMFG

t , FMMO
t and FMST

t ) and their normal-
ized History Images (HIFG

t , HIMO
t and HIST

t ) which model
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Non-crowded Crowded
Criteria AVSS07 PETS06 PETS07 AVSS07 PETS07 PETS06 HALL Total

Easy S7 C3 S4 C3 S4 C4 S5 C3 Med Hard AB PV S5 C1 S5 C2 S7 C1 S7 C4 S1 C1 S1 C4 S4 C1 S4 C2 H S1 H S2 H S3
Background initialization L L L L L L L H L H H H M H M H H H M H -
Illumination changes L - - - M L L L H M M - - - - - - L L L -
Motion level L L L L L M H H H H H H M H L H H H M H -
Overall complexity L L L L L H H H H H H H M H M H H H M H -
Number of frames 4291 3401 3051 3051 2900 4834 5311 32875 26750 2900 2900 3401 3401 3021 3021 3051 3051 10000 10834 15102 147146
Correct background No No No No No Yes Yes Yes No No No No No No No No No No Yes Yes -
Annotated stationary regions 2 1 3 4 2 14 13 39 10 3 3 1 1 2 3 6 3 3 2 12 127

Table 1. Description of the sequences of the evaluation set. (Key. L:Low. M:Medium. H:High). Correct background means that a background
free of foreground objects is manually captured at the beginning of the sequence.

Fig. 3. Example of multi-feature stationary detection example from
Hard sequence. From left to right, first row: frame 3943 (ground
truth in red), HIS3943, SFG3943; second row: HIFG

3943, HIMO
3943 and

HIST
3943. A missed detection due to a thin stationary region behind

the column occurs. HIFG
3943 does not detect the train cars because a

selection mask is applied. HISt shows the combination of all HI
(second row), being brighter for stationary regions. The Static Mask
(SFGt) shows the final result (i.e., HISt thresholding).

foreground-motion-structure variation over time. We generate the
final map HISt as the mean of three History Images. Finally, the
Stationary Detection Mask (SFGt) is computed by thresholding as
(slight variation of Eq. (4) to handle HIMO

t variability):

SFGt =


1 if HIFG

t ≥ η ∩ HIST
t ≥ η

∩HISt ≥ η × factorTh
0 otherwise

(7)

where threshold η (set to 1) maintains the alarm time established
with HIFG

t and HIST
t conditions, and factorTh weights η over

HISt due to reductions of motion History Image (HIMO
t ) over con-

tinuously occluded objects where it is difficult to find long periods of
the no motion case. As referred in [6], an occlusion handling method
is applied to recover lost initial detections by reductions of HIMO

t .
An example of the multi-feature detection is given in Figure 3.

5. EXPERIMENTAL RESULTS

This section evaluates the proposed structural feature and compares
the multi-feature detector against state-of-the-art approaches.

5.1. Datasets and performance measures

We have evaluated the proposed approach over well-known public
datasets (PETS 20061, PETS 20072 and AVSS 20073) using 17 se-

1http://www.cvg.rdg.ac.uk/PETS2006/
2http://www.cvg.rdg.ac.uk/PETS2007/
3http://www.avss2007.org/

Features Non-crowded Crowded
P R F P R F

FG 0.73 1 0.81 0.33 0.84 0.44
ST 0.73 1 0.82 0.47 0.91 0.58
FG & MO 0.73 1 0.81 0.39 0.83 0.48
ST & MO 0.83 1 0.89 0.50 0.91 0.60
FG & MO & ST 0.93 1 0.96 0.53 0.87 0.62

Table 2. Results for combinations of the three features FG, MO and
ST to detect stationary foreground. Bold indicates best results.

quences and constituting a new ground-truth of static regions4. The
data presents many challenging situations related with multiple oc-
clusions, illumination changes and dense crowds. To extend such
complex situations, we have recorded an additional dataset in a fac-
ulty hall that introduces a new concept of stationary region, station-
ary crowd (group of static people in the same spatial location whose
size could oscillate over time). The overall evaluation set contains
147146 frames and 127 annotations. Table 1 details the full dataset.

To measure detection performance, we use standard Precision
(P), Recall (R) and F-score (F) measures:

P = TP/(TP + FP ), (8)

R = TP/(TP + FN), (9)

F = (2 · P ·R)/(P +R), (10)

where TP, FP and FN are, respectively, correct, false and missed
detections (as compared to ground-truth ones).

5.2. Features comparison

Table 2 shows the performance of different combinations for the
three features of the proposed approach (FG, MO and ST). In non-
crowded scenes ST does not improve significantly the results com-
pared with FG. However in crowded scenes where many illumina-
tion changes and shadows take place, ST removes false detections
improving the detection accuracy . MO information improve results
specially in crowded scenes where high density motion areas ex-
ist. For combinations, Recall is better for ST and ST & MO due to a
better performance against camouflages than configuration including
FG, thus missing less detections. Nevertheless, Precision from ST &
MO is less accurate than FG & MO & ST due to worse shapes in their
detection masks, leading to more pixels overlapping in History Im-
ages computation that increases wrong scores benefiting when sta-
tionary objects are removed. In summary, combining FG, MO and
ST removes false detections in high density areas caused by shadows
and illumination changes, which FG does not handle alone. Some

4Ground-truth and software are available at http://www-
vpu.eps.uam.es/publications/MFSFD/
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Fig. 4. Comparative examples of feature results. From left to right,
first row: Frame 5724 from AB, SFG5724computed with FG and
SFG5724 computed with FG & MO; second row: Frame 8221 from
H S3, SFG8221computed with FG and SFG8221computed with
ST feature. First row shows how MO reduces the false positives due
to previous high motion. Second row shows how, unlike FG, ST is
able to tackle illumination changes due to high density in the scene,
thus providing more accurate detections free of false positives.

Approach Non-crowded Crowded
P R F P R F

ACC [4] 0.72 1 0.80 0.29 0.87 0.42
DUAL [11] 0.42 1 0.58 0.24 0.76 0.33
SUB [9] 0.67 1 0.77 0.25 0.87 0.37
BAY [10] 0.74 1 0.82 0.34 0.70 0.43
MED [6] 0.73 1 0.81 0.39 0.83 0.48
Proposed 0.93 1 0.96 0.53 0.87 0.62

Table 3. Comparative results of the proposed approach against re-
lated state-of-the-art. Bold indicates best results.

examples of MO and ST advantages to remove false detections are
shown in Figure 4.

5.3. State-of-the-art comparison

We compare the proposed approach with relevant state-of-the-art
based on temporal accumulation of FG [4] (ACC) and FG-MO [6]
(MED), temporal sampling of FG [9] (SUB) and FG-Motion [10]
(BAY) and dual BS [11] (DUAL). ACC, SUB and DUAL have been
implemented according to their description whereas the original soft-
ware is used for MED and BAY. All approaches use the default set-
tings proposed by their respective authors.

Table 3 shows how the selected approach achieves higher per-
formance than selected state-of-the-art, especially in crowds, where
an increase of around 29% in F-score is obtained. Such enhance-
ment is due to the high reduction of false detections (increasing P)
in cases of shadows and illumination changes. The Recall value is
maintained as best state-of-the-art approaches as the same regions
are detected. Figure 5 shows three visual examples where the im-
provement against related work approaches can be appreciated.

6. CONCLUSIONS

This paper formalizes a multi-feature framework for stationary fore-
ground detection in complex scenarios. Fast illumination changes
are handled by a structural comparison between frame and back-
ground model. Adding structural information with foreground and

Fig. 5. Comparative results of selected approaches. From top to bot-
tom: Frame and SFGt from ACC, SUB, BAY, DUAL, MED and
proposed approach. From left to right, frames 3993, 9081 and 7423
from Hard, PV and H S3 sequences respectively. Except the pro-
posed method, no one handles shadows and illumination changes.
Although BAY uses motion information for temporal sampling, the
random sampling nature together with the issues of inter-frame dif-
ference result in missing detections when continuous motion takes
place. MED solves motion issues, however shadows and sudden
illumination changes end in many false detections. The proposed
approach addresses such problems, having the initialization of the
background model as its main source of error.

motion features provides a suitable approach to operate in crowded
environments due to its robustness against occlusions, shadows, illu-
mination changes and high density motion situations. Experimental
results show a notable performance improvement over state-of-art
approaches in challenging datasets. The main drawback of the pro-
posed approach is the dependency from the initial instants to capture
a proper background, decreasing the performance when a scene free
of foreground objects is not available due to uncovered background
situations. Future work will investigate efficient background initial-
ization and the use of edge information to avoid ghost detections.
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