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ABSTRACT

Most existing high-performance co-segmentation algorithms
are usually complicated due to the way of co-labelling a set of
images and the requirement to handle quite a few parameters
for effective co-segmentation. In this paper, instead of rely-
ing on the complex process of co-labelling multiple images,
we perform segmentation on individual images but based on
a combined saliency map that is obtained by fusing single-
image saliency maps of a group of similar images. Partic-
ularly, a new multiple image based saliency map extraction,
namely geometric mean saliency (GMS) method, is proposed
to obtain the global saliency maps. In GMS, we transmit
the saliency information among the images using the warp-
ing technique. Experiments show that our method is able to
outperform state-of-the-art methods on three benchmark co-
segmentation datasets.

Index Terms— co-segmentation, image segmentation,
saliency, warping.

1. INTRODUCTION

Image co-segmentation has drawn a lot of attention from vi-
sion community as it can provide unsupervised information
regarding “what to segment out” with the help of other images
that contain similar object. The concept was first introduced
by Rother et al. [1], who used histogram matching to simul-
taneously segment out the common object from a pair of im-
ages. Since then, many co-segmentation methods have been
proposed to either improve the segmentation in terms of accu-
racy and processing speed [2, 3, 4, 5, 6, 7] or scale from image
pair to multiple images [4, 8, 9]. Joulin et al. [4] proposed a
discriminative clustering framework and Kim et al. [8] used
optimization for co-segmentation. Dai et al. [10] combined
co-segmentation with cosketch for effective co-segmentation.
Recently, Rubinstein et al. [11] adopted dense SIFT matching
to discover common objects and co-segment them out from
noisy image dataset (where some images do not contain the
common object).
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Fig. 1. Proposed GMS method, where salient common object
images can render help to weakly salient common object im-
age (the first image) in segmentation. The bottom row shows
the results of state-of-the-art co-segmentation method [11].

Despite the previous progress, there still exist some ma-
jor problems for the existing co-segmentation algorithms.
1) As shown in [12, 11], co-segmenting images might not
perform better than single-image segmentation for some
datasets. This raises up the question: to co-segment or not.
2) Most of the existing high-performance co-segmentation
algorithms are usually complicated due to the way of co-
labelling a set of images, and require handling quite a few
parameters for effective co-segmentation, which becomes
more difficult when the dataset becomes increasingly diverse.

In this paper, instead of relying on the complex process
of co-labelling multiple images, we perform segmentation on
individual images but using a combined saliency map that is
obtained by fusing single-image saliency maps of a group of
similar images. In this way, even if an existing single-image
saliency detection method fails to detect the common object
as salient in an image, saliency maps of other images can
help in extracting the common object by forming a global
saliency map. Fig. 1 demonstrates how the first image con-
taining weakly salient common object (car) is helped by im-
ages containing similar salient common object (car).
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In particular, we first enhance individual saliency maps to
highlight the foreground. We then group the original images
into several clusters using GIST descriptor [13]. After that,
Dense SIFT flow [14] is computed to obtain pixel correspon-
dence between image pairs within each cluster, which is used
to obtain the warped saliency maps. Enhanced saliency maps
and warped saliency maps are combined to obtain the global
saliency maps. Based on the global saliency maps, we select
the foreground and background seeds and use GrabCut [15]
to segment out the common object. The proposed method
is verified on three public datasets (MSRC[16], iCoseg [2],
Coseg-Rep [10]). The experimental results show that the pro-
posed method can obtain larger IOU (Intersection over Union)
values compared with state-of-the-art methods.

2. PROPOSED METHOD

The basic idea of our method is to cluster similar images
into subgroups, use dense correspondence to transfer saliency
among similar images in a subgroup, and finally perform in-
dividual image segmentation based on the combined saliency
map. Fig.2 shows the flow chart of our proposed method. The
detailed procedure is explained in the following subsections.

2.1. Notation

Let I = {I1, I2, · · · , Im} be the image group containing m
images, Di be the image domain of Ii, p ∈ Di be pixel with
coordinates (x, y). The geometric mean saliency maps are
denoted as G = {G1, G2, · · · , Gm}. The foreground and
background seeds are represented as Fi and Bi for image Ii,
respectively.

2.2. Saliency Enhancement

We use the method in [17] to obtain the initial saliency maps,
which are denoted as L = {L1, L2, · · · , Lm}. In this step,
we first obtain the binary map Ti for Li by a global threshold
ti (computed by the conventional Otsu’s method[18]) , i.e.,
Ti(p) = 1 when Li(p) > ti; otherwise, Ti(p) = 0. To en-
sure that a saliency map covers sufficient regions of the salient
object, we further enhance the saliency values of some back-
ground pixels. Particularly, for the background pixel p (with
value zero in Ti), we compute its spatial contrast saliency
value T ′

i (p) by

T ′
i (p) = δ(Ti(p) = 0)

∑
q∈Di

|I ′i(p)− I ′i(q)|e
−dpq
σ (1)

where δ(·) = 1 only if · is true, I ′i is the gray image of Ii and
dpq is the distance between the location of pixels p and q. σ is
set to 25. T ′

i is then normalized and set as the new value for
the background pixels, i.e., Ti(p) = T ′

i (p) when Ti(p) = 0,
making Ti a continuous map. To speed up the computation,
this step is performed on downsized images (say 50x50).

Fig. 2. Flow chart of proposed method

To facilitate the later geometric mean operation, brighter
saliency maps are preferred so as to avoid over-penalty caused
by low saliency values. Thus, we perform log transformation
to make the saliency map brighter, i.e.,

Mi(p) = log(1+µ) (1 + µTi(p)) (2)

where µ is set to 300 and Mi is the enhanced saliency map.

2.3. Subgroup Formation

After enhancing the saliency map, we next cluster the images
into a number of image subgroups, where the images within
the same subgroup have similar appearance. Here, weighted
GIST descriptor [13, 11] is used to represent each image with
enhanced saliency map Mi as the weights for image Ii. The
k-means clustering algorithm is applied for clustering. Let
K be the number of clusters and Ck be the set of indexes of
images in kth cluster, where k ∈ {1, · · · ,K}. In general,
10 images per group are good enough for our model, K is
determined according to the total number of images m, i.e.,
K is calculated as nearest integer to m/10.

2.4. Pixel Correspondence

Based on the clustering results, we intend to match the pix-
els among the images within each subgroup. Specifically the
masked Dense SIFT correspondence [14, 11] is used to find
corresponding pixels in each image pair. We obtain the masks
by thresholding saliency maps M ’s. Let the masks from Mi

and Mj be TMi
and TMj

respectively. The objective function
for Dense SIFT flow is represented as

E(wij ;TMi
, TMj

) =
∑
p∈Di

TMi
(p)
(
TMj

(p+ wij(p))

||Si(p)− Sj(p+ wij(p))||1 +
(
1− TMj

(p+ wij(p)
)
C0

+
∑
q∈Nip

α||wij(p)− wij(q)||2
)

(3)

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20143278



Fig. 3. Sample segmentation results for iCoseg dataset .

where Si is dense SIFT descriptor for image Ii, N i
p is neigh-

borhood of p, α weighs smoothness, C0 is a large constant,
and wij denotes flow field from image Ii to Ij .

2.5. Geometric Mean Saliency

Given a pair of images Ii and Ij from a subgroup Ck, we
transmit the saliency map Mj to Ii through warping tech-
nique. We form the warped saliency map U ji by U ji (p) =
Mj(p

′), where (p, p′) is a matched pair in the SIFT flow align-
ment with relationship p′ = p+wij(p). Since there are a few
images in subgroup Ck, for each image we fuse their warped
saliency maps along with its own saliency map by computing
the GMS score Gi(p),

Gi(p) =
|Ck|

√√√√Mi(p)

j∈Ck∏
j 6=i

U ji (p) (4)

where |Ck| denotes number of images in Ck subgroup and
GMS score is essentially the geometric mean of all the in-
volved saliency maps.

2.6. Image Segmentation

Based on the GMS scores, we obtain the final mask using
GrabCut algorithm [15], in which foregrounds and back-
ground seed locations are determined by

p ∈

{
Fi, if Gi(p) > τ

Bi, if Gi(p) < φi
(5)

where φi is a global threshold value of Gi determined by the
common Otsu’s method[18] and τ is a parameter. Note that
we also use regularization to make the GMS score consis-
tent within a region. Specifically, the SLIC algorithm [19] is
adopted to generate superpixels, and then each pixel’s GMS
score is replaced by the average GMS score of its correspond-
ing superpixel.

Fig. 4. Sample segmentation results for Repititive category of
Coseg-Rep dataset

Table 1. Comparison with state-of-the-art methods on MSRC
and iCoseg datasets using overall values of J and P

MSRC iCoseg
J P J P

Distributed[8] 0.37 54.7 0.40 70.4
Discriminative [4] 0.45 70.8 0.39 61.0

Multi-Class [9] 0.51 73.6 0.43 70.2
Object Discovery [11] 0.68 87.7 0.69 89.8

Proposed Method 0.70 88.4 0.72 91.6

3. EXPERIMENTAL RESULTS

Several challenging datasets including MSRC[16], iCoseg[2]
and Coseg-Rep [10] are used in our experiments. Two ob-
jective measures, Precision (P) and Jaccard Similarity (J or
IOU), are used for the evaluation. Precision is defined as the
percentage of pixels correctly labelled, and Jaccard Similarity
is defined as the intersection divided by the union of ground
truth and segmentation result.

We only tune the parameter τ in the range [0.94,0.99] for
each category in the datasets, and for other parameters, we
use a fixed global setting: µ = 300 and σ = 25. We compare
with the methods [11, 8, 4, 9] on iCoseg and MSRC dataset
and the method [10] on Coseg-Rep dataset.

The quantitative results (average J and P over all the cat-
egories) and the classwise comparisons results are displayed
in Tables 1-2 and Fig. 6 respectively. The segmentation re-
sults of methods [8, 4, 9, 11] are taken from the experimental
setup of Object Discovery[11]. It can be seen that the pro-
posed method obtains larger J and P values than the state-of-
the-art method [11] on MSRC and iCoseg dataset and state-
of-the-art method [10] on Coseg-Rep dataset. Sample results
for iCoseg and Coseg-Rep dataset are shown in Fig. 3 and
Fig. 4 respectively. Our method outperforms [11] on 11/14
categories in MSRC dataset and 20/30 categories in iCoseg
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(a)Image (b)[9] (c)[11] (d)Ours

Fig. 5. Comparison with state-of-the-art methods on cat and
dog categories of MSRC dataset.

Table 2. Comparison with [10] on Coseg-Rep dataset

J P
Cosegmentaton&Cosketch[10] 0.67 90.2

Proposed Method 0.73 92.2

Dataset. Significant improvement is obtained on the Coseg-
Rep dataset, where our method outperforms method [10] in
13/23 categories. For practical applications, our model per-
forms sufficiently good with default parameter setting itself
(µ = 300, σ = 25, τ = 0.97), for which we obtained 0.68,
0.67 and 0.71 Jaccard Similarity on MSRC, iCoseg, Coseg-
Rep datasets respectively. Fig. 5 gives visual comparision of
the results of different methods for the MSRC dataset.

Another experiment we conduct is to merge all the cate-
gories of MSRC dataset into one category and verify if our
model can be used on a mixed dataset. The experimental
results show that the proposed method can obtain J as 0.68
again with default parameters itself. Note that although [11]
also reports a J value of 0.68 on MSRC dataset, it tunes
its parameters and performs co-segmentation for individual
categories. This experiment demonstrates that our method
can effectively handle mixed dataset with great diversity

Fig. 6. Classwise Comparison with Object Discovery method
[11] on MSRC and iCoseg datasets and with Cosketch method
[10] on CosegRep datset

and achieve segmentation results that are close to that of
state-of-the-art method [11] obtained by doing class-by-class
co-segmentation.

4. CONCLUSION

We have proposed a saliency based automatic image co-
segmentation method. Our main idea is to form a global
saliency map for each image by fusing individual single-
image saliency maps and then use the global saliency map
to perform single-image segmentation. The experimental
results demonstrate that by adjusting only one parameter
per category our method can achieve the best performance
in all the benchmark datasets, default parameters setting in
our model produces sufficiently good results and proposed
method can handle mixed dataset efficiently. Future works
include extending the model to perform co-segmentation on
noisy image dataset and large-scale dataset.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20143280



5. REFERENCES

[1] Carsten Rother, Tom Minka, Andrew Blake, and
Vladimir Kolmogorov, “Cosegmentation of image pairs
by histogram matching-incorporating a global constraint
into mrfs,” in Computer Vision and Pattern Recog-
nition, 2006 IEEE Computer Society Conference on.
IEEE, 2006, vol. 1, pp. 993–1000.

[2] Dhruv Batra, Adarsh Kowdle, Devi Parikh, Jiebo Luo,
and Tsuhan Chen, “icoseg: Interactive co-segmentation
with intelligent scribble guidance,” in Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on. IEEE, 2010, pp. 3169–3176.

[3] Dorit S Hochbaum and Vikas Singh, “An efficient algo-
rithm for co-segmentation,” in Computer Vision, 2009
IEEE 12th International Conference on. IEEE, 2009, pp.
269–276.

[4] Armand Joulin, Francis Bach, and Jean Ponce, “Dis-
criminative clustering for image co-segmentation,” in
Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on. IEEE, 2010, pp. 1943–1950.

[5] Lopamudra Mukherjee, Vikas Singh, and Chuck R
Dyer, “Half-integrality based algorithms for cosegmen-
tation of images,” in Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on.
IEEE, 2009, pp. 2028–2035.

[6] Junsong Yuan, Gangqiang Zhao, Yun Fu, Zhu Li, Agge-
los K Katsaggelos, and Ying Wu, “Discovering thematic
objects in image collections and videos,” Image Pro-
cessing, IEEE Transactions on, vol. 21, no. 4, pp. 2207–
2219, 2012.

[7] Gangqiang Zhao and Junsong Yuan, “Mining and crop-
ping common objects from images,” in Proceedings
of the international conference on Multimedia. ACM,
2010, pp. 975–978.

[8] Gunhee Kim, Eric P Xing, Li Fei-Fei, and Takeo
Kanade, “Distributed cosegmentation via submodular
optimization on anisotropic diffusion,” in Computer Vi-
sion (ICCV), 2011 IEEE International Conference on.
IEEE, 2011, pp. 169–176.

[9] Armand Joulin, Francis Bach, and Jean Ponce, “Multi-
class cosegmentation,” in Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE,
2012, pp. 542–549.

[10] Jifeng Dai, Ying Nian Wu, Jie Zhou, and Song-Chun
Zhu, “Cosegmentation and cosketch by unsupervised
learning,” in 14th International Conference on Com-
puter Vision, 2013.

[11] Michael Rubinstein, Armand Joulin, Johannes Kopf,
and Ce Liu, “Unsupervised joint object discovery and
segmentation in internet images,” in Computer Vision
and Pattern Recognition (CVPR), 2013 IEEE Confer-
ence on. IEEE, 2013, pp. 1939–1946.

[12] Sara Vicente, Carsten Rother, and Vladimir Kol-
mogorov, “Object cosegmentation,” in Computer Vision
and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on. IEEE, 2011, pp. 2217–2224.

[13] Aude Oliva and Antonio Torralba, “Modeling the shape
of the scene: A holistic representation of the spatial en-
velope,” International journal of computer vision, vol.
42, no. 3, pp. 145–175, 2001.

[14] Ce Liu, Jenny Yuen, and Antonio Torralba, “Sift flow:
Dense correspondence across scenes and its applica-
tions,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 33, no. 5, pp. 978–994, 2011.

[15] Carsten Rother, Vladimir Kolmogorov, and Andrew
Blake, “Grabcut: Interactive foreground extraction us-
ing iterated graph cuts,” in ACM Transactions on Graph-
ics (TOG). ACM, 2004, vol. 23, pp. 309–314.

[16] Jamie Shotton, John Winn, Carsten Rother, and Antonio
Criminisi, “Textonboost: Joint appearance, shape and
context modeling for multi-class object recognition and
segmentation,” in Computer Vision–ECCV 2006, pp. 1–
15. Springer, 2006.

[17] Ming-Ming Cheng, Guo-Xin Zhang, Niloy J Mitra, Xi-
aolei Huang, and Shi-Min Hu, “Global contrast based
salient region detection,” in Computer Vision and Pat-
tern Recognition (CVPR), 2011 IEEE Conference on.
IEEE, 2011, pp. 409–416.

[18] Nobuyuki Otsu, “A threshold selection method from
gray-level histograms,” Automatica, vol. 11, no. 285-
296, pp. 23–27, 1975.

[19] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aure-
lien Lucchi, Pascal Fua, and Sabine Süsstrunk, “Slic su-
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