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ABSTRACT

A manual process for detecting and counting craters on the
surface of a planetary body becomes impractical when at-
tempting to survey a large surface area. Similarly, existing
automated methods that are e↵ective for specific areas of fo-
cus are also impractical for a large data set. We report on the
work completed so far in developing a crater detection system
to automatically detect craters down to sub-km sizes, across
a large portion of a planetary surface. Specifically, we assess
the performance of a Hough Transform (HT) for the applica-
tion and in particular the influence of its preprocessing edge
detection phase. Tests are performed on high resolution im-
ages of the Martian surface, anticipating a large scale crater
counting application for crater chronology on the surface of
Mars.

Index Terms— Mars, Craters, Hough-Transform,
Surface-Dating, Automation

1. INTRODUCTION

Crater detection and counting of planetary bodies has im-
portant scientific applications including the chronology of
surface geology [1, 2]. In particular, densities of superposed
craters were used to model crater ages in [3], however this was
achieved using a database of manually catalogued craters.
Currently, the smallest craters recorded in the available
database is around 1km in diameter [2].

The Mars Reconnaissance Orbiter’s HiRISE instrument
provides very high resolution images of 30cm/pixel (for alti-
tude of 300km) [4]. Another high resolution image source is
data from the instrument aboard ESA’s Mars Express mis-
sion. HRSC images achieve a resolution up to 10m/pixel
(250km altitude) [5], and as of January 2014 has covered
about 90% of the Martian surface (as reported by o�cial
HRSC webpage http://www.dlr.de/dlr/en). A combina-
tion of this data will provide an opportunity to count craters
down to sub-km sizes, with a good coverage of the planet’s
surface.

With reduced crater diameters, however, comes an in-
crease in frequency and consequently a significant increase in
time required to manually identify such geological features,
rendering the process impractical for surveys covering large
surface areas. Thus there is a need for a system which can
identify sub-km impacts automatically.

One study exploring automated crater counting reported
a modest rate of 93µs/pixel using a single processor [6]. For

a single Mars Express HRSC image, this amounted to 14hrs
of processing time. We can scale this to HiRISE imagery
for comparison. Take HRSC image h8304 0000 nd3, which
has pixel dimensions of 11211 x 47509, and compare it to
HiRISE image ESP 017258 2045 RED, with pixel dimensions
19582 x 67489. The HRSC image in this case again amounts
to 14hrs, while the HiRISE image could take 34hrs. For a
focussed survey of a specific area, this is an e↵ective method
with good performance (a reported detection rate of 70% [6]),
however to process only 100 HiRISE images could take up to
5 months of processing time. For this reason we envision the
integration of an automated process with a supercomputing
environment. This paper outlines the preliminary measures
that have been taken in order to establish the crater detection
itself.

Automated crater detection has been explored using vari-
ous methods, including the HT. Michael [7] used HTs with el-
evation data from the Mars Orbiter Laser Altimeter (MOLA).
While this method proved e↵ective for craters larger than
10km in diameter, the spacial resolution of MOLA imagery
(up to 64pixels/degree), is unlikely to be su�cient for smaller
features. Sawabe et al. [8] combine a number of approaches in
detection on the Lunar surface, only using the HT for larger
incomplete (degraded or interrupted edges) craters.

Stepinski and Urbach [6] developed a sub-km crater candi-
date detection method, using mathematical morphology and
shape filtering. As outlined in [9], this method works very
well for detecting candidates. For testing, we developed a
windowing method to pass the HT an image window that ei-
ther contained a crater or non-crater feature. This methodol-
ogy would be similar to applying a HT to the crater-candidate
windows generated by Stepinski and Urbach’s method, and
our results suggest it would perform well in these circum-
stances.

This paper reports on the progress made so far in devel-
oping the desired system using a HT, with initial tests per-
formed on HRSC images. We investigate the influence of the
preprocessing edge detection on the HT performance, and dis-
cuss potential improvements to be explored in future work. A
method was developed to segment images into positive and
negative windows, which are required for the classification
test used to produce comparative statistics. In addition, our
approach keeps in mind large scale automation of the work-
flow in a parallel supercomputing environment.
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2. METHOD

2.1. Hough Transform

The HT is an algorithm used for detection of features in dig-
ital imagery. Originally developed for the extraction of lines,
the HT may be adapted to arbitrary shapes by exploiting
the parameterization of the shape’s bounding curves [10]. Of
particular interest is the HT applied to circular feature de-
tection, known for its robustness when faced with occluded
or incomplete boundaries [10].

The HT fundamentally relies on edge information in an
image, which is usually produced by calculating local inten-
sity gradient magnitudes. Thresholding this data produces
a binary image, where pixels of value are termed edge pixels
and represent the edges found in the image.

Using a HT for circles, each edge pixel is transformed into
its parameter space as a right circular cone, the intersections
of which identifies edge pixels lying on the same circle defined
by the parameters [11]. The parameter space may be quan-
tized into an accumulator array, which in this case is three
dimensional and acts as a voting accumulator for circular fea-
tures.

Storage e�cient alternatives exist, reducing the accumu-
lator into two dimensions. By making use of edge orientation,
votes are cast only along normal lines at each edge pixel. In-
tersection of these normal lines will occur most frequently at
the centre of circular features within the image, allowing circle
centres to be identified by local maxima in the accumulator
[10].

2.2. Canny Edge Detection

Edge detection in digital imagery relies on locating areas with
contrasting values. In a grayscale image, the pixel values rep-
resent only intensity and so can be exploited rather simply to
obtain changes in intensity by measuring their rate of change,
otherwise known as the gradient magnitude (g). Once this
magnitude is calculated at each point, pixels with g less than
a specified threshold are deleted or set to 0, thus leaving pix-
els that are likely to be edges.

Canny edge detection is more careful about which pixels it
chooses to cull, using a method called hysteresis thresholding
[12], which takes an upper and lower threshold, henceforth re-
ferred to as C

max

and C

min

respectively. Pixels with g greater
than C

max

are unconditionally accepted as edge pixels, while
values of g less than C

max

but greater than C

min

are accepted
if adjacent to a pixel with g greater than C

max

. Any pixel
with g less than C

min

is set to zero [12]. This results in well
connected edges or contours, which is desirable for a HT. Ad-
ditionally, Canny edge detection performs an edge-thinning
algorithm called non-maximum suppression (NMS), leaving
thin edges by taking only pixels with g values that are local
maximums (relative to its immediate neighbourhood) [13].

2.3. Implementation and Workflow

The OpenCV library includes an implementation of a circle
HT. The testing in this paper is performed using this imple-
mentation, which is a version of the 2-1 Hough Transform
(21HT) as described by [14]. The 21HT uses the two di-
mensional accumulator referred to in Sec. 2.1, accumulating

votes along the edge normal. OpenCV also contains an im-
plementation of Canny edge detection, which it uses in the
preprocessing stages of the HT. We experimented with blur-
ring images prior to edge detection, however any benefits in
performance were not evident.

3. EXPERIMENT AND RESULTS

3.1. Data

The initial test data was taken from the Mars Express HRSC
instrument’s image database. 15 regions (2598 by 2664 pixels)
were cropped out of 5 nadir images (h8304 0000, h0466 0000,
h2530 0001, h9615 0000, and h7347 0000 [5, 15]). For each of
these 15 image regions, craters were identified by inspection,
with their radius and x, y pixel coordinates recorded. Crater
identification was restricted to a minimum of a 5 pixel radius,
at which point the image quality limits the ability to resolve
crater features under edge detection.

The performance analysis (discussed further in Sec. 3.2)
required a classification system that encapsulated a posi-
tive/negative test. Detection data is not inherently classifi-
able in this way, due to the di�culty in defining a negative
test. Table 1 illustrates the test outcomes required, i.e. True
Positives (TP), False Negatives (FN), True Negatives (TN),
and False Positives (FP).

Table 1: Classification for detections with ground
truth (GT) tests.

Detected Circle No Detection
Matching GT Crater TP FN
No Matching GT Crater FP TN

Di�culty arises when attempting to test the outcomes
in Table 1. For example, one method may check for TPs,
FPs, and FNs by simply comparing ground truth data with
detection data. A TP occurs when a detected circle has a
matching ground truth crater, a FP occurs when a detected
circle has no matching ground truth crater, and a FN occurs
when a ground truth crater has no matching detection. How
then does one test for a TN? It is not reasonable to count a
TN as everything that is not a crater and was not detected;
the metric is then dissimilar to the others.

An alternative method is to test the HT’s performance
on a series of windows, which are regions of images which
can be evaluated as either positive or negative; they either
contain a crater, or they do not. The classification system
follows naturally. We count a TP when a detection occurs in
a positive window, or a FN when no detection occurs. For
negative windows, a TN occurs with no detection, while a
detection will count as a FP.

A window region for a positive window is simply a square
surrounding a crater, with width and height approximately
equal to the crater’s diameter. A negative window is a square
of the image containing no crater (henceforth referred to as
negative space). It is desirable to cover the majority of the
negative space with window sizes of a similar distribution to
the positive windows. This is so that the number of negative
windows is comparable to the positive windows, but with a
tendency to have more negative ones, which reflects the ratio
of negative space to crater covered area.
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(a) (b)

(c) (d)

Fig. 1: HRSC image (a) with the corresponding pos-
itive (b) and negative (d) ground truth windows. (c)
is the distance transform of (b).

Due to the large number of windows required, automa-
tion was a desirable method to generate them for the crater
detection testing process. Generating positive windows given
the existing ground truth crater data is trivial, just requiring
an iteration over the ground truth data, assigning a window
to each crater. While negative windows could have been gen-
erated at random, a more rigorous approach was required in
order to avoid overlap between positives and negatives. Fur-
thermore, it was necessary for the windows to have a good
distribution of sizes, and a good coverage of the area between
the craters.

To achieve this coverage and range in sizes, positive win-
dows were first generated, and projected into a binary image
space as pixels of value greater than 0. A distance transform
was then performed on this image, producing another image
where the pixel intensity represents the Euclidean distance to
the closest pixel covered by a positive window. This distance
transform is illustrated in Fig. 1c.

After the data from the distance transform is obtained, a
random sample of crater diameters is taken, and correspond-
ing windows are generated in areas to which they will fit
without intersecting a positive window. This results in a nice
spread of negative windows, shown in Fig. 1d.

It is important to note that the performance of the HT
in detecting multiple craters, with multiple sizes, across a
larger image is not encapsulated by this testing method. It
is however a necessary preliminary performance analysis to
assess the viability of using a HT. This does not imply that
the assessment is irrelevant. Indeed, the workflow may be
integrated with such methods used in [6] and [9], using the
HT on windows containing crater-candidate features. This

Table 2: Canny edge detection values in ROC.

C

min

C

max

Curve (a) 10 60
Curve (b) 40 90
Curve (c) 70 120

will be explored in future work.

3.2. Results

Performance of the HT was measured using a Receiver Op-
erating Characteristic curve (ROC curve). The x-axis repre-
sents the False Positive Rate (FPR), while the y-axis is the
True Positive Rate (TPR). These metrics are similar to those
used in [9], however we include the TN quantification. Us-
ing the values discussed in Sec. 3.1, the TPR and FPR are
calculated as follows:

TPR =
TP

TP + FN

, (1)

and

FPR =
FP

TN + FP

. (2)

The curve is parametric, with each point being represen-
tative of the performance at some varying sensitivity parame-
ter within the detection scheme. In this case, the accumulator
threshold was chosen, with results being recorded and plotted
for the HT performance across various values. The shape of
an ROC curve is indicative of the detection algorithm’s per-
formance. Ideally, an ROC curve will include points (0, 0) for
the lowest sensitivity parameter, (1, 1) for the highest (i.e. de-
tect everything) and (0, 1) for some optimal parameter value.

Three sets of results were compared using ROC curves
(Fig. 2). Each set of results (each curve) represents a dif-
ferent set of C

min

, C

max

values for the Canny edge detection.
By comparing these, we can infer the influence of the edge
detection over the HT’s performance. Table 2 outlines the
values used, which were based around the values of curve
(b), selected after a basic observational optimization (what
intuitively looked like a suitable amount of edge data). An
illustration of the detection performance using parameters
from curve (b) is illustrated in Fig. 3.

Each curve’s right most data point represents the lowest
practical accumulator threshold for OpenCV’s HT, which is
when the threshold equals 1. Since vote counts are integer in-
crements in the accumulator, the only lower value is 0, which
theoretically detects everything and is reflected by the (1, 1)
points in Fig. 2. These right most data points are indicative
of the influence the C values have over the FPR; the propor-
tion of non-crater data that is being detected as a crater. As
the C values are increased from curve (a) to (c), the right
most points travel left, reducing the FPR significantly. This
reduced FPR however comes with a cost of reduced TPR,
and so there is a trade-o↵ between the two.

The inference we make from the curves in Fig. 2 is that
the TPR can be increased with a higher amount of edge data,
resulting from low C values in this case. However, since de-
creasing the C values for the Canny edge detection increases
the edge data uniformly across the image, we see a rise in
FPR. This suggests that an increase in edge data only around
craters would be beneficial.
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Fig. 2: ROC Curves for Canny edge minimum and
maximum thresholds at (a) 10 and 60, (b) 40 and 90,
and (c) 70 and 120 respectively.

4. DISCUSSION AND FUTURE WORK

A method that we are currently developing involves an alter-
native edge detection stage. Rather than using g in x, y direc-
tions (as Canny edge detection does), g is taken only in the
direction of the solar azimuth angle. A basic threshold and no
edge thinning generally leaves a pair of large segments of edge
pixels around the crater’s rim. Intuitively, more edge pixels
around a circle should result in more accumulator votes for
that circle in the HT. It is not possible to exploit this method
using the OpenCV HT implementation, due to the nature of
the 21HT variation. The approximation of the crater’s edge
normal requires the gradient to be taken in x, y directions,
which leaves a thinner set of edge pixels. For these reasons,
we have begun implementing a general version of the HT,
which does not require the edge normals, and votes in a cir-
cle for each edge pixel. This method is expected to exploit
this increase in edge pixels around the crater, allowing for in-
creased TPR without as much increase in FPR as currently
experienced.

Currently the convolution kernels used for the sun direc-
tion gradient edge detection are only representative of north,
south, east, west, and their combinatorial counterparts (e.g.
north-east, south-east etc.). It will be possible to improve on
this discretization once the metadata of HiRISE images are
considered, since the sun direction can be calculated more
precisely. This also makes it possible for the process to be
automated.

The progress so far leaves the detection phase as com-
pletely automated. However, as of yet there has been no
optimizations made or attempts to parallelize the algorithms
or workflow. Due to the volume of data we anticipate pro-
cessing, access to a parallel supercomputing system will pro-
vide the opportunity to process more of it concurrently, and
make processing of a large scale area practical. In addition,
the algorithms o↵er themselves to parallelization. For exam-

Fig. 3: HRSC image with projected detection circles
in red.

ple, the general HT may vote in the accumulator space at
di↵erent radii in parallel, since each radius’ voting space is
independent. This too will be explored in future work.

The Square Kilometre Array (SKA) project coming to
Western Australia has accelerated the development of super-
computing facilities such as iVEC’s Pawsey Centre, which
will provide the opportunity for applying this project and its
future work to the supercomputing resources required.
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