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ABSTRACT

In this paper a nonlinear inverse scattering problem is
solved by means of a variational Bayesian approach. The
objective is to detect breast tumor from measurements of the
scattered fields at different frequencies and for several illu-
minations. This inverse problem is known to be non linear
and ill-posed. Thus, it needs to be regularized by introducing
a priori information. Herein, prior information available on
the sought object is that it is composed of a finite known
number of different materials distributed in compact regions.
It is accounted for by tackling the problem in a Bayesian
framework. Then, the true joint posterior is approximated
by a separable law by mean of a gradient-like variational
Bayesian technique. The latter is adapted to complex valued
contrast and used to compute the posterior estimators through
a joint update of the shape parameters of the approximating
marginals. Both permittivity and conductivity maps are re-
constructed and the results obtained on synthetic data show
a good reconstruction quality and a convergence faster than
that of the classical variational Bayesian approach.

Index Terms— Inverse scattering problem, breast tumor
detection, Gauss-Markov-Potts prior, Gradient-like Varia-
tional Bayesian Approximation.

1. INTRODUCTION

Due to the non negligible dielectric contrast that exists be-
tween cancerous and normal healthy breast tissues and to the
non-ionizing nature of microwaves, microwave imaging ap-
pears to be a promising new technique for the early detection
of breast cancer [1, 2], innocuous and cheap as compared to
the more popular X-ray mammography [3].

Microwave imaging is handled herein as a non linear in-
verse scattering problem where the goal is to retrieve a con-
trast function representative of the dielectric properties (per-
mittivity and conductivity) of an unknown object (the breast),
from measurements of the scattered field that results from its
interaction with a known interrogating wave. The dielectric
contrast that can be quite high between the different breast tis-
sues precludes the consideration of weak scattering lineariz-
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ing assumptions as this can result in a significant loss of ac-
curacy. As for deterministic nonlinear inversion methods [4,
5, 6], that rely upon the iterative minimization of a cost func-
tional, their reliability highly depends upon the initial esti-
mate of the solution and they do not allow taking easily into
account a priori information. Yet introducing such an infor-
mation is mandatory as, in addition to be nonlinear, the in-
verse problem at hand is also known to be ill-posed, which
means that it needs to be regularized and such a regulariza-
tion is usually done by introducing a priori information.

Contrarily to deterministic inversion methods, the Bayes-
ian framework gives a real favorable ground for taking into
account the latter. Herein, we would like to account for the
fact that the breast is composed of a finite number of different
tissues distributed in homogeneous regions. This a priori is
introduced via a Gauss-Markov-Potts model which consists in
Gauss-Markov fields with hidden Potts label fields [7]. Then,
two options are usually used: a stochastic sampling, such as
in the Markov Chain Monte Carlo method (MCMC) [8], and a
variational approximation, such as in the Variational Bayesian
Approach (VBA) [9]. Both of them have been applied to op-
tical diffraction tomography [10] and VBA have shown its ef-
fectiveness in terms of quality of reconstruction and fastness
compared to MCMC [11, 12]. However, while both of them
provide good results, MCMC and VBA methods are highly
time consuming. This is the reason why we have developed
a new method based on the variational Bayesian approach,
but with a simultaneous gradient-like updating of the shap-
ing parameters [13] in order to accelerate the convergence
of the classical VBA. This new technique has already been
studied in X-ray tomography, dictionary decomposition and
astrophysical map-making [14, 15]. The originality herein is
to apply it to an inverse scattering problem and to test it for
breast cancer detection where the unknown contrast is com-
plex valued, which means that both permittivity and conduc-
tivity maps have to be reconstructed. Hence the variational
technique is adapted to the complex contrast case by assum-
ing that permittivity and conductivity have the same segmen-
tation, i.e. the same hidden field, but are independent condi-
tionally to this hidden variable.
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The paper is organized as follows: section 2 describes
the measurement configuration and the forward modeling of
the problem. In section 3, we present the Bayesian frame-
work used to solve the inverse scattering problem. The new
method, from now on denoted as Gradient-like Variational
Bayesian Approach (GVBA), is detailed in section 4, whereas
section 5 displays some results obtained from synthetic data.
Finally some conclusions are given in section 6.

2. THE FORWARD MODEL

Let us consider a 2D-TM configuration where the media are
supposed to be cylindrical of infinite extension along the z
axis and are illuminated by a line source that generates an
electric field polarized along the latter axis. A homogeneous
breast (domain Ds), whose relative dielectric permittivity
and conductivity are ¢, = 6.12 and ¢ = 0.11 Sm™!, re-
spectively, and of 9.6-cm-diameter circular cross-section, is
placed in the air (domain Dp). The breast is affected by a
tumor (domain D3) of 2-cm-diameter circular cross-section,
whose relative dielectric permittivity and conductivity are
e, = 55.3 and 0 = 1.57 Sm™!, respectively, and is illu-
minated by the source from 16 various angular positions
uniformly distributed around a 7.5-cm-radius circle centered
at the origin and at 6 different frequencies in the band 0.5 - 3
GHz that yields a good compromise between resolution and
penetration of the wave in the breast. For each frequency and
illumination angle, 32 measurements of the scattered field are
performed at angular positions uniformly distributed around
the same circle. It can be noted that, in the inversion process,
the data corresponding to the different frequencies and illu-
minations are processed simultaneously in order to reduce the
ill-posedness of the inverse problem.
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Fig. 1. The measurement configuration

The different media are characterized by their propagation

constant k(r) such that k(r)? = w?epe,.(r)po + iwpoo(r),
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where w is the angular frequency, €y and po are the permittiv-
ity and the permeability of free space, respectively, r € D is
an observation point in a test domain D and €, (r) and o(r)
are the relative permittivity and conductivity of the medium.
We now consider a contrast function y defined in D and null
outside the object, such that x(r) = (k(r)? — k?)/k?, where
k1 is the propagation constant of the embedding medium, and
we define w(r) as the Huygens type sources induced within
the target by the incident wave, i.e. w(r) = x(r)E(r) where
E(r) is the total field in the target.

Modeling is based upon a domain integral representation
of the electric fields which consists in two coupled contrast-
source integral equations whose discrete counterparts are ob-
tained by means of a method of moments [16] with pulse-
basis and point matching. This amounts to partition the test
domain D into elementary square pixels small enough in or-
der to consider the field and the contrast as constant over each
of them. The discrete model then reads:

Giw, + €, (1)
X E)+ X;Gw, + €, )

Yy, =

Wy

where E, x and w are vectors that contain the values of
E(r'), x(r') and w(r’) at the centers r’ of the pixels (r’' €
D), y is the vector containing the values of the scattered field
y(r) at the measurement points 7, X = diag(x), G° and G°
are huge matrices whose elements result from the integration
of the Green’s function over the pixels [10] and € and & are
variables that account for the model and measurement errors
and that are supposed to be centered and white and to satisfy
Gaussian laws, i.e. € ~ N(€|0,vI) and & ~ N(&|0, vel).
The subscripts f and v, that will be omitted from now on, ac-
count for the different frequencies and for both the different
frequencies and source positions, respectively.

3. BAYESIAN INVERSION

Now, the inverse problem consists in estimating the contrast
X, or more precisely the relative permittivity €, and the con-
ductivity o, from the scattered fields y, given the incident
fields E*™°. Tt can be noted that, the induced sources w being
unknown, they have to be estimated at the same time as x.

The first step is to account for the a priori information
available on the sought solution. Herein, we would like to
account for the fact that the object is composed of a finite
number K of different materials distributed in compact ho-
mogeneous regions. This is done by modeling the contrast as
a Gaussian mixture. Each pixel x(7) is assigned to a material
(class) z(r). For each class, the pixel contrast conditional dis-
tribution is a Gaussian law p(x(7)|z(r) = k) = N (my, vg),
where k£ = 1,..., K, with a mean value m; and a variance
v, that depend upon the material properties.

The information that the different materials are distributed
in compact homogeneous regions is accounted for by means
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of a Potts-Markov model on z that expresses the spatial de-
pendence between the neighboring pixels:

1Aexp AT ST b - =) ¢

reD T'eVy
(3)

where z = {z(r),r € D} represents the image of the labels
(segmentation), A determines the correlation between neigh-
bors (herein A = 1), T'(\) is a normalization factor and V4 is
a neighborhood of r, herein made of the four nearest pixels.
Conjugate prior laws are assigned to other hyper-parameters,
ie. p(mg) ~ N(mglpo,m0), p(vk) ~ ZG(vk|no, o),
p(ve) ~ IG(ve|ne; de). plve) ~ IG(velne, de). where
N (m|p, 7) and ZG(v|n, ¢) stand for Gaussian and inverse-
gamma distributions, respectively, and o, 70, M0, @0, Nes
®e, Ne and @¢ are meta-hyper-parameters appropriately set to
obtain almost non-informative prior distributions.

It can be noted that a semi-supervised context is consid-
ered herein as K is supposed to be known, whereas the con-
trast x, the induced currents w, the segmentation z and the
hyper-parameters of the model ¢» = {m, v, ve, v¢} are esti-
mated simultaneously. Afterwards, we apply the Bayes for-
mula to get the joint posterior distribution of the unknowns:

p(z[A) =

p(x,w,z,ly) o p(ylw,v)p(wlx,ve) p(x|z, m,v)
x  p(z|A)p(m|po, 70) p (v]no, o)
X p(Ve|ne, de) P (Ve|ne, de)- “)

Applying the joint maximum a posteriori (JMAP) or the
posterior mean (PM) to compute the joint posterior distribu-
tion yields intractable forms and an approximation is needed
to obtain a practical solution.

4. THE GVBA APPROACH

The gradient-like variational Bayesian approach (GVBA)
is derived from the classical variational Bayesian approach
(VBA, [9]) that aims at approximating the joint posterior
distribution p(x|y) (x = {x,w, z,%}) by a separable law
q(z) = [, ¢i(x;) which is as close to the posterior distribu-
tion as possible in terms of the Kullback-Leibler divergence.
It can be noted that minimizing the KL divergence is equiv-
alent to maximizing the negative free energy derived from
statistical physics F(q) = [q(z y,z)/q(x)) de. The
solution of this problem can be obtamed by alternate opti-
mization with respect to each ¢;(x;) and is given by:

qi(x;) o< exp {< In(p(z, y))> 5)

Tl 45 () }

The computation of g; requires the knowledge of all g;,
j # i. However, recently, other ways than this classical al-
ternate optimization have been investigated [14]. In fact, the
optimization involved in VBA is an infinite dimensional con-
cave problem. Hence, approximating densities ¢;(x;) can be
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obtained by adapting a classical optimization algorithm, such
as a gradient method, to VBA. Using the notion of optimal
step, the approximating marginals have an iterative functional
form. At iteration n + 1, they read:

n n (1—0()
@@ o« (@7 @)

X exp a<ln(p(:c7y))> (6)

i385 ()

where a (o > 0) is a descent step that minimizes the negative
free energy at each iteration. A strong separation is chosen:

(z:) [T alma)a(v).
k

Then, using equation (6), the approximating marginal for each
unknown variable can be computed by means of functional
optimization. Updating the approximate posterior requires 7
different gradient steps. However, since there is no depen-
dence between X, z, Ve, V¢, vy and my, their gradient steps
can be set to 1 in order to accelerate the convergence. Hence,
only the contrast source updating step a, is computed. This
is done in an optimal way from the negative free energy func-
tion by means of a Newton’s method. The optimal step then
reads:

g(x) = q(vq(ve) x [T alxi)a(wi)g

9

ot = AF (o) /A Fow)| )
Q=0

with AF = 0F /0cv,, et A2F = 92F /8%a,,. At this point,
it can be mentioned that taking the likelihood in the expo-
nential family and using conjugate priors will result in joint
posteriors and marginals ranging in the exponential family.
Optimization with respect to ¢;(x;) then results in optimizing
the parameters of these laws. In the following we summarize
the results for the Gaussian - inverse gamma case:

g(w) = N (T, Vo), a(x) = N(m,, V),
q(my) = N(ﬁkafk)v q(ve) = Ig(ﬁk;%k)a
Q(UE) :Ig(ﬁeaqbe)v q(UE) :Ig(ﬁg,(bg),

gz)=Croceap XY D <. ®

TED T'eV(T)

where 727, = e +aw Voyduw, duw = [EGO” (y — GTiw)+
?(’V Einc _ GcH (’Vi + f}x)Einc — T + %chﬁw +
G mm, — G (W + V) x G ) |.
‘72 is given in [17], whereas other shaping parameters are
detailed in [10]. a%P! then reads:

— 2
opt _ mdew + % Ez Sw
b /mv;ljodw + ﬁiuodéu + %Z Si ’
stand for theNﬁrst and second derivatives, re-
;= Ry, Vo, — 1 (see details in [17]).

(0%

€))

where ’ and "/
spectively, and S,
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5. NUMERICAL EXPERIMENTS AND RESULTS

The above method (GVBA) is applied to synthetic data ob-
tained with the configuration of section 2. The initial values
of the unknowns x(*) and w(® are obtained by backpropa-
gating the scattered field data from the measurement circle
onto D, whereas the initial segmentation z(%) is given by K-
means clustering [18], with empirical estimators for 1/)(0). It
can be noted that the same segmentation is used for the real
and imaginary parts of the contrast. The test domain D is a
12.16-cm-side square partitioned into 64 x 64 1.9-mm-side
square pixels. The results obtained after 2000 iterations of
GVBA are displayed in Figure 2 and compared to those ob-
tained by means of classical VBA and Contrast Source In-
version (CSI, [6]) methods after 2000 and 1000 iterations, re-
spectively, the former two being initialized by a few CSI itera-
tions. It appears that GVBA outperforms VBA with respect to
both the resolution and speed of convergence, as shown in Ta-
ble 1 that displays the CPU time needed by the different meth-
ods and the corresponding peak signal to noise ratio, and that
both methods outperform the deterministic CSI method par-
ticularly concerning the retrieved conductivity values. This
is confirmed by the profiles retrieved along an horizontal line
crossing the center of the tumor (Figure 2-bottom).

Table 1. Comparison of the different approaches

Method CSI VBA | GVBA
CPU time (min) 74 87 51
PSNR (dB) 77.64 | 82.78 | 85.74

6. CONCLUSION

Herein, microwave imaging for breast cancer detection is han-
dled in a Bayesian framework with a Gauss-Markov-Potts
prior. A new algorithm (the so called gradient-like varia-
tional Bayesian approximation) based on the classical varia-
tional Bayesian approximation and a gradient descent method
is used to compute the posterior with a free-form distribution
with respect to complex quantities as both permittivity and
conductivity maps have to be retrieved. As a first step, good
results have been obtained on synthetic data corresponding to
a simple object and it has been shown that the new approach
performs better than the classical VBA, especially in terms of
speed of convergence. Application of the above method to
more realistic scattering configurations and to experimental
data collected in controlled situations is under investigation.
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Fig. 2. Permittivity (left) and conductivity (right) reconstructed by
means of CSI (second row), VBA (third row) and GVBA (forth row)
compared to the real object (top) and the profiles reconstructed with
CSI (green line), VBA (dashed line) and GVBA (red line) along an
horizontal line passing through the center of the tumor (bottom).
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