
A FAST LEARNING ALGORITHM
FOR MULTI-LAYER EXTREME LEARNING MACHINE

Jiexiong Tang, Chenwei Deng ∗

School of Information and Electronics
Beijing Institute of Technology, China

Email:{cwdeng, jiexiongtang}@bit.edu.cn

Guang-Bin Huang, Junhui Hou

School of Electrical and Electronic Engineering
Nanyang Technological University, Singapore

Email: {egbhuang, houj0001}@ntu.edu.sg

ABSTRACT

Extreme learning machine (ELM) is an efficient training
algorithm originally proposed for single-hidden layer feed-
forward networks (SLFNs), of which the input weights are
randomly chosen and need not to be fine-tuned. In this pa-
per, we present a new stack architecture for ELM, to further
improve the learning accuracy of ELM while maintaining
its advantage of training speed. By exploiting the hidden
information of ELM random feature space, a recovery-based
training model is developed and incorporated into the pro-
posed ELM stack architecture. Experimental results of the
MNIST handwriting dataset demonstrate that the proposed
algorithm achieves better and much faster convergence than
the state-of-the-art ELM and deep learning methods.

Index Terms— Extreme learning machine (ELM), deep
learning, multi-layer training, sparse representation.

1. INTRODUCTION

Extreme learning machine (ELM), proposed by Huang et al.
[1], is a training scheme for single-hidden layer feed-forward
network (SLFNs). Unlike the other training algorithms, e.g.,
neural networks (NNs), or support vector machine (SVM),
the parameters of ELM hidden layer need not be adjusted, and
could be independent of the training data. ELM has demon-
strated to have much faster learning speed and lower compu-
tational complexity than NNs and SVM in numerous applica-
tions, such as face recognition [2], image segmentation [3],
and human action recognition [4], etc.

Theoretically, ELM is able to approximate any complex
nonlinear mappings directly from the training samples. How-
ever, similar to the traditional SLFNs, ELM is established by
a shallow architecture [1]. Therefore, in order to perfectly fit
the highly-variant input data, it may need a tremendous large
network that would not be easy to implement.

∗This work was supported by the National Natural Science Foundation
of China (NSFC) under Grant 61301090; and in part by the Excellent Y-
oung Scholars Research Fund of Beijing Institute of Technology under Grant
2013YR0508.

Inspired by the deep learning (DL) [5], a multi-layer ELM
(ML-ELM) [6] was developed to address this issue. ML-ELM
decomposes the original inputs into multiple hidden layers,
the output of previous layer is used as the input of the cur-
rent layer with an orthogonal initialization, and the weighting
parameters of each hidden layer are set by layer-wise unsu-
pervised training. However, when the number of input nodes
is different from that of the output ones, the orthogonal con-
straint of the input weights cannot be satisfied for the least
mean square training in [6].

Different from the existing ML-ELM and DL schemes, in
this paper, we propose a new and fast stack architecture for
ELM, to further improve the training speed of ML-ELM and
DL, while achieving higher learning accuracy. By using ℓ1
norm optimization of the output weights, more sparse hidden
layers are generated. Moreover, ELM random feature space
is utilized for better representation, and this helps to achieve
more adaptive data mapping.

The rest of this paper is organized as follows. In Section 2,
some basic principles of ELM are briefly introduced; in Sec-
tion 3, the proposed stack architecture of ELM and its related
optimization method are presented in detail; Experimental re-
sults and analysis are given in Section 4, and we compared
the results of proposed scheme with those of state-of-the-art
ELM and DL methods; while Section 5 concludes this paper.

2. BASIC PRINCIPLES OF ELM

ELM is a fast training algorithm originally developed for the
SLFNs, and has been extented to the generalized SLFNs. In
this section, we briefly introduce the basic ideas of ELM.

Given a training set N = {(xi, ti)|xi ∈ Rn, ti ∈ Rm,
i = 1, · · · , L}, where xi is the training data vector, ti repre-
sents the class label of each sample, and L denotes the number
of hidden nodes. The ELM training algorithm can be summa-
rized as follows [1]:

(1) Randomly assign the hidden node parameters, e.g., the
input weights wi and biases bi, i = 1, · · · , L .

(2) Calculate the hidden layer output matrix H .
(3) Obtain the output weight vector β = H†T , where T =

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 2014175



Random
feature 

mapping
R-ELM1 R-ELM2 ELM...Input Output

Supervised learningN layer unsupervised learning
(Feature Space)

Original data space

Fig. 1. Architecture of the proposed framework.

[t1, · · · , tL]T , H† is the Moore-Penrose generalized inverse
of matrix H .

The orthogonal projection method can be efficiently used
for the calculation of MP inverse: H† = (HTH)−1HT , if
HTH is nonsingular; or H† = HT (HTH)−1, if HHT is
nonsingular.

According to the ridge regression theory, it was suggest-
ed that a positive value 1

λ is added to the diagonal of HTH or
HHT in the calculation of the output weights β, and by doing
so, the resultant solution is more stable and has better gener-
alization performance [1]. That is, in order to improve the sta-
bility of ELM, we can have β = HT ( 1λ+HHT )−1T (or β =
( 1λ +HHT )−1HTT ), and the corresponding output function
of ELM is f(x) = h(x)β = h(x)HT ( 1λ + HHT )−1T (or
f(x) = h(x)β = h(x)( 1λ +HHT )−1HTT ).

3. PROPOSED METHOD

3.1. ELM Stack Architecture

The proposed ELM stack architecture is built in a multi-layer
manner, as is shown in Fig.1. Before training, the input da-
ta should be transformed to an ELM random feature space,
which can help to exploit the hidden information among train-
ing samples. Then, a N -layer unsupervised learning is per-
formed to eventually obtain the high-level sparse features.
The output of the hidden layer can be represented as

Hi = g(Hi−1 × β) (1)

where Hi is the output of the ith layer (i ∈ [1, N ]), Hi−1 is
the output of (i − 1)th layer and g(·) denotes the activation
function of hidden layers. The output of N th layer unsuper-
vised learning HN is used as the input of the supervised ELM
training to obtain the final classification or regression result
of the whole network.

In addition, it is known that adding “noise” to the original
inputs can force the hidden weights to capture more importan-
t information [7]. Therefore, before unsupervised encoding,
the input data will firstly scattered by a random matrix, which
is similar to the corruption process in the stacked denoising

autoencoder (SDA) of deep learning (DL). The corrupted da-
ta is then “recovered” by ℓ1 optimization, and the reason for
the use of ℓ1 norm is that it can obtain more sparse feature
representation of the input data and also have better perfor-
mance for data recovery. Since the recovered data is finally
utilized for the layer-wise unsupervised training in Fig.1, we
term it as recovery-based ELM (R-ELM), and the details of
R-ELM optimization are to be discussed in next subsection.

It should be noted that the proposed ELM stack architec-
ture is different from the traditional DL [5]. From concept
point of view, DL considers multi-layer as a whole with un-
supervised initialization, and after such initialization the en-
tire network will be trained by back propagation (BP) NNs,
all layers are “hard coded” together. In contrast, each layer
in the proposed ELM stack architecture can be considered as
a separate part (or an autonomous sub-system/sub-module).
It is something like feature extraction and then classification,
and fine-tuning is not required for the entire system combined
by feature extraction and classification, and thus the training
speed can be much faster than traditional BP-based DL.

On the other hand, the proposed learning scheme differ-
entiates itself from the existing ML-ELM [6] in twofold: 1)
the orthogonal initialization is avoided, since the orthogonal
constraint is not reasonable when the number of the input n-
odes is different from that of the output ones; 2) instead of
ℓ2 norm used in ML-ELM, ℓ1 penalty is applied to generate
more sparse and meaningful hidden features.

3.2. R-ELM Optimization

As introduced in previous subsection, the proposed learning
framework briefly consists of two parts: unsupervised and su-
pervised training. Since the supervised training is implement-
ed by the original ELM, in this subsection, we will focus on
how to train the unsupervised building blocks (i.e., R-ELM)
of the proposed ELM stack architecture. The structure of R-
ELM is shown in Fig.2.

It can be seen that unlike the traditional BP-based NNs,
the input weights of R-ELM are established by searching the
path back from the random space. The ELM theory in [8, 9]
has proved that random feature mapping (with almost any

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 2014176



nonlinear activation function) can provide universal approx-
imation capability, and by doing so, more important informa-
tion can be exploited for hidden layer feature representation.

The optimization model of R-ELM can be denoted as the
following equation.

Oβ = argmin
β

{
||Hβ −X||2 + ||β||ℓ1

}
(2)

where X denotes the input data, H is the output of random
mapping and β is the hidden layer weights to be obtained.

In the existing DL algorithms, X is usually the encoding
outputs of the bases β, which need to be adjusted during the
iterations of optimization. However, in R-ELM, as we are to
utilize random mapping for hidden layer feature representa-
tion, X is the original data and H is the random initialized
output which need not to be optimized [8, 9]. Furthermore,
the experiments in the next section will show that it would
not only help to improve the training time but also the learn-
ing accuracy.

In the following, we will describe the optimization algo-
rithm for the ℓ1 norm recovery problem. For clear represen-
tation, we re-write the object function in Eq. 2 as

Oβ = f(β) + g(β) (3)

where f(β) = ||Hβ − X||2, and g(β) = ||β||ℓ1 is the ℓ1
penalty term of the training model.

Then, a fast iterative shrinkage-thresholding algorith-
m (FISTA) [10] is adopted to efficiently solve the problem
in Eq.3, by minimizing a smooth convex function with the
complexity of O(1/k2), where k is the iteration times. An
example of recovered data obtained by FISTA is depicted in

Fig. 2. R-ELM architecture.

(a) (b)

Fig. 3. Visualization of recovered data: (a) original dataset;
(b) recovered dataset.

Fig.3, it can be seen that the characteristics of original data
are maintained in the recovered ones although the data in Fig.
3(b) is reconstructed from highly nonlinear transformation.

The implementation details of FISTA are as follows [10]:
(1) Calculate the Lipschitz constant of the gradient of s-

mooth convex function ∇f .
(2) Begin the iteration by taking y1 = β0 ∈ Rn, t1 = 1

as the initial points. Then for k(k ≥ 1):
(a) βk = pL(yk), where pL is given by:
pL = argmin

β

{
L
2 ||β − (βk−1 − 1

L∇f(βk−1)||2 + g(β)
}

(b) tk+1 =
1+

√
1+4tk2

2

(c) yk+1 = βk + ( tk−1
tk+1

)(βk − βk−1),
By computing the iterative steps above, we could man-

age to recover the data from the corrupted ones. By using the
resultant bases β as the weights of R-ELM, the correlation
between the input and learned features would reflect the com-
pact representations of the original data. And as R-ELM is
adopted as the building block of proposed framework, higher
level feature representations can be generated by layer-wise
comparison. Also, compared with ML-ELM [6] which sim-
ply uses the input as output with traditional least mean square
method, the ℓ1 optimization has been proved [10] to be a bet-
ter solution for data recovery and other applications. It will
help to reduce the number of neural nodes and thus further
improve the testing time of ELM.

4. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the learning accuracy and training speed of
proposed method are compared with the relevant state-of-
the-art schemes. And the widely-used MNIST handwriting
dataset [11] is used to compare the performance of proposed
method with those of ML-ELM [6], DBN [5], and ELM [1].
This dataset consists of 60000 training images and 10000
testing images. In our simulations, the testing hardware and
software conditions are listed as follows.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 2014177



Fig. 4. The sparse features learned from reproducing kernel
Hilbert space, here only 10 × 10 blocks extracted from input
weights are demonstrated.

HP z820 workstation, Intel(R) 2 × 2.3G CPU E5-2630,
128G DDR3 RAM, Windows Server 2008 R2 Enterpirse,
Matlab R2012b and Microsoft Visual Studio 2010.

In the experiments, for fair comparison, the structure of
hidden nodes of ML-ELM and proposed method are kept the
same ([784− 700− 700− 12000− 10]), and the DBN results
were obtained using the source code in [12].

In the proposed work, the original input data is first s-
cattered into the random reproducing kernel Hilbert space.
Fig.4 shows the learned sparse features of R-ELM, and one
can see that they are with sematic meanings, which is help-
ful for many vision tasks, such as feature extraction, object
recognition, image classification, etc.

On the other hand, the learning accuracy and speed com-
parison of different methods are presented in Table.1.

Table 1. Performance Comparison of Different Methods

Method Accuracy (%) Training time (s)

Proposed 99.12 281.37

ML-ELM [6] 99.01 485.87

DBN [5] 98.89 64832.13

ELM [1] 97.39 996.74

It can be seen that the original ELM has the lowest perfor-
mance with only one single hidden layer, however, the train-
ing speed is pretty fast due to the random parameter settings.
DBN achieves an obvious better performance than the ELM,
and the reason may be the use of deep learning architecture.
As for the ML-ELM, it is hundreds times faster than that of
DBN. The proposed training algorithm obtained further im-
provement in training time (30-50%) with a better learning
accuracy, and the result benefits from the training model of
R-ELM and the whole hierarchical framework.

5. CONCLUSIONS

This paper proposes a fast learning algorithm for multilayer
ELM, which uses R-ELM as the building block of unsuper-
vised learning followed by an ELM-based supervised learn-
ing. The proposed R-ELM scatters the input data with a ran-
dom initialization matrix, and captures the hidden features by
recovering the data back from the corrupted output. To obtain
more sparse hidden layer weights, ℓ1 optimization is adopted.
Compared with the existing ML-ELM and DL algorithms, our
work achieves better and faster performance.

6. REFERENCES

[1] G.-B. Huang, H. Zhou, and X. Ding, “Extreme learning ma-
chine for regression and multiclass classification,” IEEE Trans.
Syst. Man, Cybern. B, Cybern., vol. 42, pp. 513–529, 2012.

[2] A.A. Mohammed, R. Minhas, Q.M. Wu, and M.A. Ahmed,
“Human face recognition based on multidimensional PCA and
extreme learning machine,” Pattern Recognition, vol. 44, pp.
2588 – 2597, 2011.

[3] C. Pan, D. Park, Y. Yang, and H. Yoo, “Leukocyte image seg-
mentation by visual attention and extreme learning machine,”
Neural Comput. and Appl., vol. 21, pp. 1217–1227, 2012.

[4] R. Minhas, A. Baradarani, S. Seifzadeh, and Q.M. Jonathan
Wu, “Human action recognition using extreme learning ma-
chine based on visual vocabularies,” Neurocomputing, vol. 73,
pp. 1906–1917, 2010.

[5] G.E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,” Neural computation, vol. 18,
pp. 1527–1554, 2006.

[6] L. Kasun, H. Zhou, G.-B. Huang, and C. Vong, “Represen-
tational learning with extreme learning machine for big data,”
IEEE Intelligent System, vol. 1, pp. 160–162, 2013.

[7] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Man-
zagol, “Stacked denoising autoencoders: Learning useful rep-
resentations in a deep network with a local denoising criteri-
on,” The Journal of Machine Learning Research, vol. 9999,
pp. 3371–3408, 2010.

[8] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approxima-
tion using incremental constructive feedforward networks with
random hidden nodes,” IEEE Trans. Neural Networks, vol. 17,
pp. 879–892, 2006.

[9] G.-B. Huang and L. Chen, “Enhanced random search based
incremental extreme learning machine,” Neurocomputing, vol.
71, pp. 3460–3468, 2008.

[10] A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM
Journal on Imaging Sciences, vol. 2, pp. 183–202, 2009.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, pp. 2278–2324, 1998.

[12] G.E. Hinton and R.R. Salakhutdinov, “Reducing the dimen-
sionality of data with neural networks,” Science, vol. 313, pp.
504–507, 2006.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 2014178


