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ABSTRACT 

 

Recently, consumer depth cameras have gained significant 

popularity due to their affordable cost. However, the limited 

resolution and quality of the depth map generated by these 

cameras are still problems for several applications. In this 

paper, we propose a novel framework for single depth image 

super resolution guided by a high resolution edge map 

constructed from the edges in the low resolution depth image 

via a Markov Random Field (MRF) optimization. With the 

guidance of the high resolution edge map, the high resolution 

depth image is up-sampled via a joint bilateral filter. The 

edge guidance not only helps avoid artifacts introduced by 

direct texture prediction, but also reduces the jagged artifacts 

and preserves the sharp edges. Experimental results 

demonstrate the effectiveness of our proposed algorithm 

compared to previously reported methods. 
 

Index Terms— Single Depth Image, Super Resolution, 

Edge Guided, Joint Bilateral Up-sampling 
 

1. INTRODUCTION 
 

During recent years, we have witnessed a rapid progress in 

the field of 3D imaging. The birth of low-cost 3D scanning 

devices such as Microsoft Kinect and Time-of-Flight (TOF) 

cameras has opened the door for new applications in different 

research disciplines, including computer vision, graphics, 

human computer interaction and virtual reality. However, the 

limited resolution and low quality of the depth map generated 

by these cameras still pose serious issues for various 3D 

applications. For example, the resolution of SwissRange 

SR4000 depth camera and PMD Camcube camera are only 

about 200*200. Even for Kinect, the resolution of the depth 

image is 640*480, which is much lower compared to that of 

its corresponding color image (1280*1024). In this work, we 

aim to enhance the resolution of depth images with a single 

depth image as the input, which offers unique challenges. In 

its essence, single image super resolution (SR) requires the 

prediction of a large amount of unknown pixels based on the 

limited input pixels. Moreover, although depth maps contain 

less texture compared to color images, the depth captured by 

existing consumer cameras is usually degraded by noises due 

to the inaccurate scanning hardware or difficulties in 

calculating the disparity. In this paper, we propose a novel 

framework for single depth image SR which can produce 

better results than previous reported methods as shown in Fig. 

1. 

       

      
(a) 

  
                   (b) 

      
(c) 

 
                     (d) 

Fig. 1. Visual Result on the Middlebury dataset up-scaled by a factor of 4. 
(a) Aodha et. al [14], (b) Yang et. al [13], (c) Hornacek et. al [15], (d) Ours.  
 

      Traditional depth SR methods are focused on fusing 

multiple complimentary low resolution (LR) depth maps to 

get a high resolution (HR) depth image [1, 2]. However, they 

rely on the assumption that multiple range images are 

available with small camera movement, which may not be 

true for many practical applications. It was also proposed to 

use a pre-aligned HR color image to help upscale the depth 

map [5-11], since the high frequency components in color 

images such as edges can be utilized. For example, in [5, 7, 

11], joint color and depth up-sampling is proposed to get the 

discontinuity information from the HR color image. In [10], a 

nonlocal means filter is utilized to regularize depth image in 

order to maintain the detailed structure. However, 

notwithstanding the appealing results that such approaches 

could generate, in many cases, the HR color image fully 

registered with the depth image may not be available.   

       For single image SR, in [12, 14], it formulates the 

problem as a multiclass MRF model with each hidden node 

representing the label of a HR patch. In [15], it searches for 

HR patches by identifying patch correspondences within the 

depth map itself. However, since the reconstruction is highly 

biased to examples externally or internally, it will not 

provide reliable results when no correspondence could be 

established. In [13], HR/LR patches are reconstructed as 

sparse linear combinations of learned coupled dictionary 

atoms based on the assumption that HR and LR patches 

should share the same reconstruction coefficients. However, 

sometimes it’s difficult to learn the mapping between HR and 
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LR patches, which is many to one, yielding reconstruction 

problems such as blurry or ringing artifacts. Among the edge 

based methods, a gradient profile prior is proposed to 

improve color image SR in [16]. In [17], a multi-scale edge 

representation is produced to guide the process of color 

image SR, subject to the back-projection constraint. But 

these works still generate blurry artifacts at the edges and are 

not suitable for the depth image SR case.  

       Another existing problem in depth SR is to deal with 

noises. Since depth images usually are noisy, directly up-

sampling them will also magnify the noises, and produce 

artifacts along edges. For the SR purpose, in order to 

preserve depth edges, a bilateral filter is utilized in the pre-

processing step for noise reduction in [14]. However, from 

our observation, not only the noises, but the jagged artifacts 

around depth discontinuities caused by inaccurate sampling 

and heavy quantization of the disparity in the original low 

resolution image are also magnified.  

       In this paper, we propose a novel framework for single 

depth image SR guided by a reconstructed HR edge map. We 

convert the SR problem from HR texture prediction to HR 

edge prediction, which is motivated by the essence that edges 

are of particular importance in the textureless depth image. 

Guided by the predicted smooth HR edge map, a modified 

joint bilateral filter is applied to reconstruct the HR depth 

textures. The edge guidance not only helps avoid artifacts 

introduced by direct texture prediction, but also reduces the 

jagged artifacts and preserves the sharp edges. With 

simulations, we demonstrate the effectiveness of the 

proposed approach in terms of image quality both visually 

and quantitatively. 

       The rest of the paper is organized as follows: In Section 

2, we present our proposed approach. In Section 3, we 

perform simulations to show the effectiveness of the 

proposed approach. In Section 4, we conclude the paper. 
 

2. PROPOSED APPROACH 
 

Our algorithm is motivated by the color assisted joint up-

sampling approaches, in which the HR color image provides 

the discontinuity guidance so that pixels in a local region 

with different depth could be weighted differently in the 

upscaling process. It also infers that if only a HR depth edge 

image is provided, we could still follow the same idea to 

reconstruct the HR depth image. Therefore, instead of 

directly reconstructing the HR depth image, we propose to 

construct a HR edge map in the first step and then use the 

edge map as a guidance to reconstruct a HR depth image via 

a modified joint bilateral filter. Compared to the example or 

learning based SR methods, the guidance of HR edges could 

alleviate artifacts generated by direct depth value prediction 

such as blurring or ringing around edges. Moreover, the 

constructed HR edge map is smoothed without jagged 

artifacts, which could be magnified by methods such as 

nearest neighbor interpolation or some learning based 

methods. Thus, guided by the edge map, the HR depth image 

will contain smooth and sharp edges.  

       In the following discussion, we denote upscaling by a 

factor of g as up-sampling the image by g*g. We denote dl 

and dh as the input LR and the output HR depth image. We 

also have an external dataset containing a collection of HR 

and corresponding LR images. We first apply bicubic 

interpolation to upscale dl to the same resolution of dh and 

then extract edges using Canny edge detector to obtain an 

edge map er. Usually, er is not smooth and contains jagged 

edges. To have a higher quality HR edge map, we apply a 

Shock filter [19] to the interpolated depth map before edge 

detection and get a smoother edge map es. Together with er 

and the prior knowledge from the external dataset, we will 

refine es into a smooth HR edge map eh described in the 

following. Guided by eh, dh will be produced by up-sampling 

dl via a modified joint bilateral filter.  
 

2.1. High Resolution Edge Map Construction 
 

Given the jagged edge map er and the smoothed edge map es, 
we construct eh by minimizing a discrete MRF energy 

function. Our method is patch based: for each edge pixel pi in 

er, we extract w by w patches in er and es, centered at the 

position of pi, denoted as xr
i
 and xs

i
, respectively. To reduce 

the computation complexity, we discard patches which have 

a larger overlap (i.e. with an overlap area >(w-2k)
2
, where k 

is a constant) with previously extracted patches. We denote 

X={xr, xs} as a collection of stacked patches xr and xs. In the 

external dataset we go through the same process to get the w 

by w jagged edge patches yr
i 
from the given LR images and 

smooth edge patches ys
i 

from the given HR images. We 

denote Y={yr, ys}, containing a collection of stacked patches 

yr
 
and ys.  

       The basic idea of MRF is to obtain HR edge patches 

from the external dataset under some likelihood and 

coherence constraints. Instead of directly obtaining depth 

intensity patches like [14], our intuition is based on the fact 

that binary edge patterns are much simpler than intensity 

patterns especially in depth images. Thus, it could give better 

matches for the edge patch, making the reconstruction less 

biased to the dataset. In our Markov grid model, each X
i
 

forms the node and the hidden label corresponds to an edge 

patch Y
i
 from the dataset. The total energy of this MRF is: 

                     E(y) = E1 +w1E2 +w2E3                         (1) 

where E1 and E2 are data terms and E3 is the smoothness 

term. The first data likelihood term measures the similarity 

between the edge patch in xr and the candidate edge patches 

in yr in terms of the Euclidean difference of their 

corresponding distance transforms: 

                      E1 =
PN

i=1kd(xi
r)¡ d(yi

r)k
2                       (2) 

where d(*) stands for the distance transform [3] of the edge 

patch. The introduction of distance transform is to give a 

better similarity measurement of the binary patterns.  

       For E2, it measures the similarity of the smoothed HR 

edge patches. Besides the first term E1, the purpose of this 

term is to ensure that the HR edge patch candidates should 
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have consistent similarity measurement both in terms of the 

corresponded original and the smoothed edge pattern. 

                          E2 =
PN

i=1kx
i
s ¡ yi

sk
2                             (3) 

        The smoothness term E3 enforces coherence in the 

overlapping regions between the neighboring edge patch 

candidates, where Oij is an overlap operator that extracts the 

region of overlap between patch ys
i
 and ys

j
: 

         E3 =
PN

xi
r\x

j
r 6=Â

kOij(d(yi
s))¡Oji(d(yj

s))k
2          (4) 

        We use belief propagation [18] to minimize Eqn. (1). As 

a result, for each Xi, its discrete label which corresponds to 

an HR edge patch in Y can be inferred. Finally, ys
i
 are put 

together by averaging pixel values in the overlapped region 

and then thresholding to the binary edge map eh as shown in 

Fig. 2. From it we can see that in our result, the edges are 

smoothed (straight in the zoomed-in region) without jaggy or 

wavy noises. Note that for some parts of the edges, the edge 

width is more than one pixel (thicker edge) due to the 

averaging of overlapping patches. However, it could be 

handled properly as discussed in the next section.  
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Constructed edge map with an upscale factor of 4. Zoomed in 
results of (a) Edges of the bicubic upsampled depth. (b) Edges of the 

bicubic upsampled depth after using Shock filter. (c) Edges of our result. 

(d) The ground truth edges.  
 

2.2. Edge Guidance for Single Depth Image Super 

Resolution via Joint Bilateral Upsampling 
 

Once eh is constructed, dh can be recovered via a modified 

joint bilateral filer, in which the range kernel is replaced by 

an indicator function guided by eh: 

 dh(p) = 1
kp

P
qµN(p) dl(q#) ¢ fd(kp# ¡ q#k) ¢ geh

(p; q)    (5) 

where N(p) is an s by s supporting window centered at pixel 

p. p  and q  denote the corresponding pixel location in the 

LR image. Note that p  and q  take only integer coordinates 

in the LR image. Therefore, the guidance edge map is only 

sparsely sampled. kp is a normalizing factor. fd(*) is a zero 

mean spatial Gaussian kernel and g(*) is a binary indicator 

function defined as: 

geh (u,v) =
1

0

if  u and  v are at  the same side of  the edge eh

if  u and  v are at  the different  sides of  the edge eh

ì

í
ï

îï

  (6) 

       With the guidance provided by the HR edge map, only 

pixels at the same side of the edge will be considered during 

averaging so that edges could be well preserved. Within a 

patch (centered at p), to determine whether two pixels (p and 

q) are at the same side of the edge, we first dilate the patch to 

its 4-connected neighbors, the dilation result is denoted as D. 

If pixel i is on or next to the edge, D(i) is 1, otherwise, D(i) is 

0. Then we construct a graph G so that each node NG is 

corresponding to a pixel in D and the edge EG is formed by 

connecting the 8-connected neighbors of each node. The 

edge weighting wG between pixel i and j is determined as:  

wG(i; j) = dist(i; j) ¢ (max(D(i);D(j)) +1);8(i; j) 2EG (7) 

dist(*) stands for the Euclidean distance of the coordinate of 

pixel i and j. Based on the assigned edge weights, we then 

compute a shortest path S between p and q in G. Basically we 

add more weights on pixels near the edge towards finding the 

shortest path so that the path will not touch the edge as much 

as possible. We draw S in the patch by including the 4-

connected neighbors around each pixel along the path 

(except p and q) denoted as S’, as shown in Fig. 3(a). We will 

divide our situation into two cases for discussion: 1) p is not 

an edge pixel, 2) p is an edge pixel.  
 

                                   (a) 

               (b) 
 

(c) 
Fig. 3. (a) Illustration of two pixels at different sides of the edge. (b) A 

special case of two pixels mistakenly classifies as at the different sides of 

the edge. (c) Adding weights near the edge avoids situation in (b). (Best 

viewed in color) 
 

       CASE 1: p is NOT an edge pixel. As shown in Fig. 3(a), 

if S’ covers the edge pixels (cyan pixels), p and q can be 

classified as at two sides of the edge, otherwise, p and q are 

at the same side. It should be noted that in some special 

cases, since we also add 4-connected neighbors along S, p 

and q could be mistakenly classified as at opposite sides 

because S’ covers the edge pixel as shown in Fig. 3(b). 

However, because we are adding more weights on pixels 

near the edge, the calculated shortest path will avoid going 

through pixels near the edge. As a result, S’ will not cover 

the edge as shown in Fig. 3(c).  
 

          
(a)                                       (b) 

Fig. 4. Illustration of the case that p is on the edge. (a) p and q are at 
different sides, (b) p and q are at the same side. (Best viewed in color) 

 

       CASE 2: p is an edge pixel. If p is on the edge, it is 

ambiguous to decide whether p and q are on the same side or 

not. Thus, we simply exam the number of edge pixels along 

S’ in order to reduce the error caused by the thicker edge 

case. If the number of edge pixels along S’ is larger than 1, p 

and q are classified as at different sides. Otherwise, p and q 

are at the same side as shown in Fig. 4(a) and (b).  

Once we determine whether two pixels in the support 

are at the same side of the edge, the HR image can be 

S’ 
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interpolated using Eqn. (5). In case that there is no pixel on 

the same side with p (i.e. geh(p, q)=0,        ), which 

rarely happens, we simply use the corresponded pixel value 

from bicubic interpolation as the up-sampled value for p.  
 

3. EXPERIMENTAL RESULTS 
 

In this section, we perform experiments on depth images 

obtained from multiple sources such as TOF camera and 

Middlebury Stereo data [4]. For training dataset, we use the 

synthesized HR depth data mentioned in [14]. We get the LR 

counterparts by down-sampling the HR images. The size of 

edge patches are set as 21 by 21. We set the parameters in all 

of our experiments as w1=8 and w2=1 in Eqn. (1), and k=7. 

The supporting window size for the bilateral filter is 

s=scale*4+1, and sigma_d=0.5. We will show some of the 

experimental results using our algorithm both visually and 

quantitatively. 

 

3.1. Quantitative Results 
 

We compare our results with the learning based method [13] 

and the example based methods [14, 15] quantitatively on the 

Middlebury dataset. We first down-sample and smooth the 

ground truth using nearest neighbor interpolation to create 

the LR depth images. RMSE and SSIM results of different 

methods with different upscaling factors are listed in Table 1. 

From the result, we can see that our proposed algorithm 

outperforms other approaches. Note that we scale the depth 

images in the Middlebury dataset to the range of [0, 1], 

which is different from that reported in [14].  

 

3.2. Visual Results 
 

We compare our results with others visually on the 

Middlebury dataset as shown in Fig. 1 and Fig. 5. From the 

result, we can see that for the basis learning method [13] (Fig. 

1(b) and Fig. 5(b)), since it involves direct HR texture 

prediction, artifacts around edges introduce the undesirable 

visual result. For the example based methods [13, 15] (Fig. 1 

(a, c) and Fig. 5(a, c)), each HR patch is directly replaced by 

patches externally or internally, leading to artifacts in some 

region which has unique patterns (e.g. right bottom corner in 

Fig. 5(a) and upper right region in Fig. 5(c)). Our results, 

however, do not have jagged artifacts since our constructed 

HR edge map is smooth. Besides, our results have the most 

similar visual structures to the ground truths because our 

method is based on the bilateral filtering in which the HR 

pixels are interpolated from the original LR counterpart.  

       We also compare the visual results of the depth map 

captured by TOF camera (Camcube Camera) and the results 

are shown in Fig. 6. In this case, our method also generates 

more desirable visual results compared to other methods.  
 

 
(a) 

 
(b) (c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 5. Visual comparison on the Middlebury stereo data up-scaled by a 
factor of 4. (a) Aodha et. al [14], (b) Yang et. al [13], (c) Hornacek et. al 

[15], (d) Reconstructed edge map. (e) Our result, (f) Ground truth. 
 

 

  
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. Visual comparison on the depth captured by TOF camera up-
scaled by a factor of 4. (a) Aodha et. al [14], (b) Yang et. al [13], (c) 

Hornacek et. al [15], (d) Our result.  
 

4. CONCLUSION 
 

In this paper, we present a novel framework for single depth 

image SR guided by a constructed HR edge map. We convert 

the SR problem from HR texture prediction to HR edge 

prediction, which is motivated by the essence that edges are 

of particular importance in the textureless depth image. We 

construct the HR edge map by posing it as a MRF labeling 

problem. Then guided by the edge map, the HR depth image 

is up-sampled using a joint bilateral filter. Experimental 

results demonstrate that our method not only has better 

objective performance, but also helps avoid artifacts 

introduced by direct texture prediction, reduces the jagged 

artifacts, and preserves sharp edges.  

Table 1 RMSE and SSIM Comparison on Middlebury Data with Different Methods 

 RMSE Comparison Scaled *4 SSIM Comparison Scaled *4 RMSE Comparison Scaled *3 

 Cones Venus Teddy Tsukuba Cones Venus Teddy Tsukuba Cones Venus Teddy Tsukuba 

Nearest Neighbor 1.498 0.367 1.348 0.832 0.886 0.954 0.895 0.833 1.172 0.309 0.925 0.672 
Yang et. al [13] 2.169 1.017 1.582 0.840 0.869 0.924 0.871 0.777 1.292 0.421 1.133 1.505 
Aodha et. al [14] 1.481 0.337 1.280 0.833 0.982 0.961 0.902 0.839 1.319 0.312 0.987 0.844 
Hornacek et. al [15] 1.399 0.450 1.196 0.727 0.911 0.954 0.906 0.850 NaN1 
Ours 1.148 0.272 0.871 0.662 0.927 0.974 0.930 0.870 0.839 0.226 0.703 0.544 

                                                 
1 The super resolution result upscaled by 3 is missing from the results provided by the author.  
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