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ABSTRACT

Human localization is fundamental in human centered com-
puting and human-robot interaction (HRI), as human opera-
tors should be localized by robots before being actively ser-
viced. This paper proposes a simple and efficient approach
for estimating the distance and orientation of an human, from
a single robot-acquired image. We adopt a simple combina-
tion of multiple Haar feature-based classifiers to compute face
scores, that represent the probability that the detected face is
acquired from each of a predefined set of poses. Using the
Locally Weighted Projectron Regression (LWPR), an online
incremental regression-based learning scheme, we can reli-
ably learn and predict the pose of a human face in real-time at
a low computational cost. The accuracy, robustness, and scal-
ability of the obtained solutions have been verified through
emulation experiments performed on a large data set of real
data acquired by a networked swarm of robots.

Index Terms— Head pose estimation, multi-camera, face
scores, online incremental learning, non-linear regression

1. INTRODUCTION

Human localization in smart indoor environments is impor-
tant in many applications, such as visual surveillance, moni-
toring and ambient assisted-based living. Face pose estima-
tion has been an active topic in the computer vision commu-
nity, due to its significant role in many real-world applica-
tions such as: gaze detection, multi-view face recognition and
human-robot localization. It is a challenging problem due to
factors associated with illumination conditions, facial expres-
sions, subject variability and camera distortion.

Being aware of a human’s location (i.e., localization)
is a precondition for human-centered computing applica-
tions (e.g. human-robot interaction (HRI)). There are several
ways of localization, including vision-based methods and
RFID-based methods. Vision-based methods have recently
gained more attention due to their advantages of requiring
no additional wearable sensing devices. In this work, we
focus attention towards a vision-based method for human
and multi-UAV localization, which has no restrictions on a
human’s movement or posture, and is robust in real situations.

Over the years, many techniques have been proposed
for face pose estimation from a monocular camera. They
can be categorized in three different classes: model-based,
appearance-based and hybrid approaches. Model-based ap-
proaches typically rely on the use of geometrical properties,
such specific sets of facial features such as eyes, nose, mouth
are used for face pose estimation [1, 2]. On the other hand,
appearance-based approaches use the entire face (head) to
model and learn from training data [3] and formulate the face
pose estimation problem as a supervised machine learning
task. Appearance-based works have generally made use of
classifiers such as Support Vector Machines (SVMs) [4] and
regression-based techniques such as Support Vector Regres-
sion (SVR) [5, 6, 7].

Hybrid approaches are a combination of model-based and
appearance-based approaches [8, 9, 10]. Each category of ap-
proaches has its limits and constraints. Hybrid approaches
generally provide better performance, but are computation-
ally expensive and not suitable for real-time implementation,
and although model-based methods are fast and simple, they
are sensitive to occlusion and usually require high resolu-
tion images which may be not available in many applications
such as driver monitoring or video surveillance. Generally
in appearance-based approaches, facial images are compared
with a set of facial appearance templates to find the most simi-
lar match, however the computational cost of comparing each
image with a large number of templates is computationally
expensive. To overcome these limitations, we direct our atten-
tion towards regression-based approaches, as they can easily
assign a discrete pose to a set of computed facial features.

Non-linear regression-based methods have demonstrated
to be effective for face pose estimation tasks [11, 12, 13, 14,
6]. In [14], gradient features were computed from face images
and then fed into a SVR. A kernalized version of the Partial
Least Squares (PLS) or (Ridge Regression (RR)) was adopted
in [12], which notably improved the performance of face pose
estimation. One difficulty faced by these regression-based
approaches was determining an appropriate kernel space for
mapping facial features. In a previous task [15], we adopted
the RR approach for online multi-view point learning of hand
gestures (sensed by a swarm of foot-bot robots [16]), however
this task was modeled as a multi-class classification problem.
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Despite the above mentioned methods, we consider that,
given a face image, face detectors can assign a confidence
score to a detection. If the detection threshold is set low, this
results in a number of sub-windows being clustered around
the face. We use this approach to determine face quality
measures. For online learning and prediction of the face
pose, we augment the face quality measures with the Locally
Weighted Projectron Regression (LWPR), an online regres-
sion approach, that uses a mixture of locally linear kernalized
regressors. This paper is organized as follows. Section 2
presents the contributions of our work, i.e., the algorithms
and methods for solving the aforementioned issues. Section 3
presents the findings of the experiments evaluated on real
data, and Section 4 presents concluding remarks.

2. IMPLEMENTATION

2.1. Face Detection and Tracking

Face detection allows a swarm of UAVs to identify position
and visual orientation of human operators with respect to their
location. In turn, face detection is functional to determine the
relative angular, radial, and altitude position of UAVs with
respect to a human. We adopt the notion of face detection
to create a normalized and user-centric view of the human,
from the point of view of multiple UAVs. At first, the task
of each robot in our networked swarm of UAV drones is to
detect a human for interaction using its onboard camera. To
achieve this, we use the front-mounted cameras of the Parrot
A.R. Drone 2.0 quadcopters, that acquire images in a native
HD resolution of 1280 × 720 pixels at 30 fps. Face detec-
tion is performed using the OpenCV implementation of the
Viola-Jones face detector [17]. As face detectors are insensi-
tive to small changes in scale or position, multiple face detec-
tion windows are often clustered around a face, as illustrated
in Figure 1.

Fig. 1: Face pose estimation on an airbone UAV. Identified
face poses: (a) right, (b) center, (c) left.

We use the notion of the detected sub-windows (i.e., out-
put of the Haar face detector), as a measure to assess the
quality of the detected face. These sub-windows represent
the confidence of a face detection classifier. The larger the
number of sub-windows detected from a face, the higher con-
fidence the classifier has in detecting the face, and vice versa.

In practice, using the OpenCV face detector, we set the pa-
rameter specifying the “number of neighbours each candidate
sub-window should retain” to be maximum, which identifies
all groups of neighbouring sub-windows clustered around the
face. Furthermore, as rapid ego-motion of airborne camera’s
onboard UAVs can lose a detected face or detect false posi-
tives, we adopt a Kalman Filter for tracking a detected face.
In order to determine which candidate face sub-window to
use as an input for tracking, a nearest neighbour strategy is
employed using the Mahalanobis distance computed from the
covariance of the detected face sub-windows.

2.2. Face Pose Estimation

Inspired by the well known AdaBoost technique [18] that im-
plements a robust face detector capable of detecting not only
frontal faces, but lateral (left and right) profiles as well, in this
work we propose a combination of multiple Haar face detec-
tors that can identify a human face from a 3-dimensional per-
spective. We use the number of neighbouring sub-windows
detected around the face to estimate the pose (position) of a
human’s face (in terms of a meaningful score) from a robot’s
point of view.

In our approach, we employ two pre-trained Haar face de-
tectors, one classifier FCf trained on the ‘frontal views’ of
the face profile, while the other classifier, FCs on the ‘side
profiles’ of the face, as illustrated in Figure 1, where the red-
coloured sub-windows show face detections from FCf and
the blue-coloured sub-windows show detections from FCs.
For every acquired image frame I , four relative face quality
measures Fm = {Fmf , Fmff , Fms, Fmsf} are computed
using FCf and FCs. Each face measure in Fm represents
the number of the neighbouring sub-windows detected around
the face from different poses (i.e., front, side, and flipped):

1. FCf is run on I to obtain Fmf ;

2. I is flipped horizontally (180◦; horizontal shift) to ob-
tain Ih. Ih is then processed by FCs to produce Fmff ;

3. FCs is run on I to get Fms;

4. FCs is run on Ih (obtained in Step 2) to obtain Fmsf .

Using the these face quality measures, three (3) face
scores {Sc, Sr, Sl} are derived for representing the cur-
rent face pose from a robot’s point of view, where Sc =
Fmf + Fmff , Sr = Fms, and Sl = Fmsf . Large values
of a face score mean that a face is detected with a high confi-
dence, and vice versa for low scores. In simpler words, when
a UAV is positioned directly in front of a human (frontal view
of the face), the value of Sc is higher than Sr and Sl. If the
UAV is positioned towards the left or right side of the human
(side profile), then the value of Sl or Sr respectively will be
higher than all other scores. If all three scores are below the
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threshold STH , then the human is not present in the robot’s
field of view, or is too far away to be detected.

Face pose estimation also needs to take into account the
relative distance between a human and a robot, which pro-
vides another reliable measure to aid human and multi-robot
localization. The distance between a robot and a human is es-
timated by using the face quality measures in Fm, and calcu-
lating the total sum of the area of all detected sub-windows,
d = (

∑i
T FA(i)/T), in FA = {Fmarea(i), ..., Fmarea(T )},

where T = Fmf + Fmff + Fms + Fmsf . Large values
of d represent that the robot is near to the human, whereas
smaller values indicate the robot is far from the human. We
use {Sc, Sr, Sl} and d (computed from every image), as fea-
tures for learning and estimating the face pose.

Fig. 2: Spatial arrangements of UAVs for human-UAV local-
ization and data acquisition.

2.3. Dataset Acquisition

We build dataset of images using a swarm of four (4) Par-
rot drones, by acquiring face pose images in a resolution of
1280 × 720 pixels. Using 4 drones we could acquire a rela-
tively large amount of images of a human’s face from multiple
points of view. To acquire the dataset, the UAVs are posi-
tioned at around the human using the multi-robot formation
illustrated in Figure 2. Using this configuration, each robot
acquired and stored approximately 1200 unprocessed images
with known ground truth information (θ,D), while a human
operator rotated his face in a semi-circular plane of [0, 180◦].
The process is repeated 5 times, once for a different distance
D = {1, 2, ..., 5}m between the UAVs and the human, which
results in a dataset of approximately 24, 000 images, acquired
by the swarm from 4× 5 = 20 different viewpoints.

2.4. Locally Weighted Projection Regression

The Locally Weighted Projection Regression (LWPR) is a
family of online incremental learning algorithms that per-
forms piecewise linear function approximation using re-
gression. By detecting locally redundant or irrelevant input
dimensions, LWPR locally reduces the dimensionality of the
input data by finding local projections using Partial Least
Squares (PLS) regression [19].

In this work, we employ LWPR to learn a non-linear re-
gression function from training data (by means of piecewise
linear models called receptive fields) that incrementally arrive

as input-output tuples (xi,yi), considering multi-variate out-
put data. Learning online and incrementally (as data arrives)
involves automatically determining the appropriate number of
receptive fields (i.e., local models) [20]. In supervised learn-
ing algorithms, if xi denotes a set of features computed from
a single image, then yi represents its respective target label.
Thus, the LWPR regression function can be constructed by
blending local linear models Ψk(x) in the form [21]:

f(x) =
1

T (x)

K∑
k=1

wkΨk(x), T (x) =

K∑
k=1

wk(x) (1)

where T (x) represents the normalization factor and
wk(x) is a locality kernel (i.e., the activation of a recep-
tive field) that defines the area of validity of the local models
(receptive fields), which we model as a Gaussian (RBF) func-
tion, in order to fit the data using non-linear regression [21]:

wk(x) = exp

(
−1

2
(x− ck)T Dk(x− ck)

)
(2)

where ck is the centre of the kth linear model (or receptive
field), Dk is its positive semi-definite distance matrix that de-
termines the size and shape of the neighbourhood contributing
to the local model.

For learning the linear models Ψk(x), in this work we
employ an online formulation of weighted PLS regression
within each local model of LWPR to fit the hyperplane. Given
a query point x, each linear model calculates a prediction
ŷk(x). The output of the LWPR is the normalized weighted
mean (i.e., linear combination) of all K linear models repre-
sented by, ŷ = (

∑K
k=1 wkŷk)/(

∑K
k=1 wk) [22]. As a significant

computational advantage, we expect that far fewer projections
than the actual number of input dimensions are needed for ac-
curate learning.

3. EXPERIMENTAL RESULTS

To demonstrate the capabilities of the developed system, we
performed experiments investigating the performance, robust-
ness, and efficiency of the solution proposed in Section 2.
The dataset described above has been used for running quan-
titative emulation experiments: face observations are sampled
from this dataset of real images for learning and prediction.

We use subsets of images from the dataset to train and
validate the LWPR. For training (learning) and testing (vali-
dation) we use xi = {Sci , Sri , Sli, di} to be the four (4) facial
features and yi = (θ,D) their respective target labels. Using
a Gaussian (non-linear) kernel, the LWPR maps these features
into a face pose φ, that we project onto a horizontal plane
[0, 180◦] (with d serving as a normalization factor). Thus, an
ordered pair (φ, d) computed from a single face image rep-
resents the angular distance between a human and the UAV,
that is a useful measure to aid human-swarm localization.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20141402



Fig. 3: MAE of face pose detection for horizontal plane [0, 180◦].

We study the face pose detection accuracy of a single
robot as a function of its angular distance (rφ, rd). Using sub-
set of images from the dataset, we estimate (rφ, rd) from ev-
ery image and compute the average pose accuracy Pacc using
the ground truth data (i.e., difference between the actual and
predicted angular distances), as reported in Figure 4. Robots
positioned at distances between d = [1, ..3]m in the central
locations provide good recognition accuracies (up to 97%).
With the increase of the radial distance between the human
and the robots (e.g. d ≥ 3m), face detection performance sys-
tematically degrades, since the face is not detected reliably.
As a result, we consider (2 ≤ d ≤ 3m) to be a reasonably
safe proximity for humans to interact with airborne UAVs.

Fig. 4: Face pose detection accuracy of a single robot as a
function of angular distance (φ, d).

Averaging the difference between the ground truth data
and the predicted face poses, we can compute the Mean Ab-
solute Error (MAE), as illustrated in Figure 3 (left). This in-
dicates that our approach is robust to a variety of poses in a
[0, 180◦] plane, with an average MAE of less than 10, which
is stable with pose variations in the range [−80, 80◦]. Fur-
thermore, we intentionally vary the percentage of outliers in
all training data from 0% (uncorrupted) to 50%, as depicted
in Figure 3 (right). As the number of noisy samples increase
in the training set, the MAE increases higher. This shows
that our approach works robustly with noisy (corrupted) data,
which is common in real-world applications.

Lastly, a comparative analysis of the LWPR approach (on-
line) with other regression-based learning schemes used in
context of face pose estimation, namely, SVR (batch) and RR
(online) schemes is performed, as illustrated in Figure 5. It

is observable that LWPR requires a smaller amount of sam-
ples to provide a good recognition accuracy as compared to
RR. However, SVR has a faster convergence rate as uses one-
shot batch-learning and can generalize better with a smaller
number of training samples, as compared to online learning
algorithms. Thus, it is significant to say that LWPR works
best amongst other online regression approaches due to spar-
sity regularization in the model, and is robust to outliers.

Fig. 5: Performance comparison of different regression-based
learning schemes.

4. CONCLUSION

In this paper we presented a novel approach to address the
problem of face pose estimation, by adopting simple and reli-
able Haar feature-based cascaded classifiers, together with the
use of LWPR, an online incremental regression-based learn-
ing strategy. To experimentally evaluate the performance of
our proposed approach, we acquired a large amount of real
labelled images using a swarm of UAVs, and used these to
perform emulation tests.
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