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ABSTRACT

Evaluating the quality of segmentations is an important
process in image processing, especially in the medical
domain. Many evaluation metrics have been used in
evaluating segmentation. There exists no formal way
to choose the most suitable metric(s) for a particular
segmentation task and/or particular data. In this pa-
per we propose a formal method for choosing the most
suitable metrics for evaluating the quality of segmenta-
tions with respect to ground truth segmentations. The
proposed method depends on measuring the bias of
metrics towards/against the properties of the the seg-
mentations being evaluated. We firstly demonstrate
how metrics can have bias towards/against particular
properties and then we propose a general method for
ranking metrics according to their overall bias. We fi-
nally demonstrate for 3D medical image segmentations
that ranking produced using metrics with low overall
bias strongly correlate with manual rankings done by
an expert.

Index Terms— image segmentation; evaluation met-
rics; selection

1 Introduction

1.1 The need to understand metrics: Many evaluation
metrics for image segmentation have been introduced;
most researchers choose the evaluation metrics arbitrar-
ily or according to their popularity. Investigating met-
rics would help researchers to better understand them
and help companies and stakeholders to save effort and
time reaching optimal systems [1]. A poorly defined
metric may lead to inaccurate conclusions like selecting
suboptimal models when comparing the performance
of classifiers [2].

Many researchers have investigated the drawbacks
of particular metrics given particular properties of the
data being classified. As a special case of classification,
image segmentation is also affected by these draw-
backs. The following are some examples: Hausdorff
distance is very sensitive to noise and least squares

based evaluation methods are very sensitive to out-
liers [3]. Mutual information doesn’t utilize spatial
information inherited in images because only voxel
relationships are considered but not the neighbor-
hoods [4]. Information theoretical measures have a
non-convergent baseline which depends on the ratio
between the number of data points and the number of
classes. Therefore this class of measure needs chance
correction [5]. Commonly used measures (precision,
recall and F-measures) are biased and don’t consider
the level of chance [6]. Choosing evaluation metrics
is very important and application-dependent; when
evaluating imbalanced datasets, the metric choice is
not obvious [2]. Metrics have different properties with
respect to their correlation with user satisfaction crite-
ria and their ease of interpretation [7]. Benhabiles et
al. [8] validated 250 automatic segmentations against
their corresponding ground truth segmentations using
four different evaluation metrics. The results were then
compared with manual ratings from 40 human ob-
servers. They found that the correlations between the
ranking based on the manual ratings and the rankings
based on the evaluation metrics vary between 30% and
80% depending on the used metric.

Research in the last decades generally results in
the relative system improvement achieved becoming
smaller and smaller. As a result, sensitivity and fi-
delity of evaluation metrics become increasingly criti-
cal. When improvements are small, metrics with high
sensitivity are needed to measure small but real im-
provements and also with high fidelity to distinguish
between improvements based on user preferences and
improvements resulting from biased relevance judg-
ments [9] [10].

1.2 Problem definition and notations: In this paper,
we propose a formal method for selecting the most suit-
able metrics to evaluate image segmentation depend-
ing on the data being segmented and the goal of the
segmentation task. The method is primarily based on
two facts: the first is that effectiveness metrics can be
biased towards or against properties of the images be-
ing segmented, meaning that particular metrics over-
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penalize or over-reward segmentations given particu-
lar properties [4] [6] [11] [2] [3]. The second fact is
that selecting the best evaluation metrics can be sub-
ject to the segmentation goal which means that the bias
towards/against a particular property of the data can
be differently important depending on the segmenta-
tion goal [8] [7]. To meet the context dependency, the
proposed method allows individual weighting of the
influence of each property according to its importance
in case this is known, which increases the effectiveness
of the method.

The problem to be solved in this paper can be
formulated as follows: given a set of metrics M =
{M1, M2, ..., Mr}, a set of image segmentations C =
{C1, C2, ...., Ck}, then the task is to rank the metrics in
M according to their suitability for evaluating the qual-
ity of the segmentations in C provided that for each
segmentation there exists a ground truth segmentation.

The proposed method is general and can be applied
to select evaluation metrics for all types of segmenta-
tions. However, for simplicity, we will consider only the
crisp segmentation task in this paper to present and for-
mulate the method. In particular, we will be analyzing
and testing the method using a special type of segmen-
tation, namely medical volume segmentation e.g. mag-
netic resonance images (MRI) where voxels (3D pixels)
are either assigned or not to a given class (segment) e.g.
an organ or a tumor.

2 Related Work

Jin et al. [12] established a formal method for compar-
ing two different measures and introduced two criteria
for formal comparison of the goodness of evaluation
metrics, namely the degree of consistency (DoC) and
degree of discriminancy (DoD). Applying these criteria,
they showed theoretically and empirically that AUC is
a better measure than accuracy in evaluating the perfor-
mance of classifiers. [13] [14] applied formal constraints
based on axiometry to compare and judge evaluation
metrics depending on the grade of satisfaction of these
constraints. Busin et al. [15] used axiometrics to define
a formal and general notation that fits any effectiveness
metric. Based on this notation, they proposed several
axioms that should be satisfied by an effectiveness met-
ric. They used these axioms as criteria to evaluate met-
rics. All these papers deal with the problem only from
a theoretical axiometrical point of view without taking
into account the classification goal and the nature and
properties of data being classified.

Sakai [11] proposed a method for evaluating evalu-
ation metrics by measuring their sensitivity using Boot-
strap Hypothesis Tests, and used this method in com-

paring seven evaluation metrics. They negate the belief
that commonly used evaluation measures are equally
reliable. Fatourechi et al. [2] proposed a framework
based on Desired Region of Operation (DROP) for se-
lecting the best evaluation metric for evaluating imbal-
anced classifications. Sakai [16] provided comparisons
between metrics depending on the sensitivity and sta-
bility using the Voorhees/Buckley swap method [17].
All these papers lack generality because they are meth-
ods designed either for specific metrics or for specific
metric properties.

3 Proposed Methods

We propose a method for choosing the most suitable
metric for evaluating image segmentation. In Sec-
tions 3.1 to 3.3, the method is described and discussed
formally. Then this formal description is explained in a
step by step demonstration with a real example in Sec-
tion 4, which also provides an experimental evaluation
of the method.

Given a set of effectiveness metrics M and a set of
segmentations C, each of the segmentations is evalu-
ated against its ground truth segmentation using all
metrics to obtain a ranking per metric. Now, choos-
ing the most suitable metric goes in two main steps:
(i) Constructing different partitions on the segmenta-
tion set C and ranking the subsets of each partition ac-
cording to their average quality regarding each metric.
(ii) Inferring the metric bias from the rank correlations
across all partitions and all metrics. In the following,
each of the steps is described in more details.

3.1 Constructing partitions and rank structure:

1. For each metric m ∈ M, evaluate each of the segmen-
tations x ∈ C against its ground truth segmentation
to get the score matrix s where s(x, m) is the score of
segmentation x measured by metric m.

2. For each metric m ∈ M, assign each segmentation
x ∈ C a rank depending on its score to get the rank
matrix r where r(x, m) is the rank of segmentation x
measured by metric m.

3. Define a set F of t segmentation properties. These
can be any features thought to impact metrics e.g.
class imbalance, number of segments, segment
size, noise, deviation, shape signatures, sphereness,
boundary smoothness, resolution, moments, etc.
Furthermore, features can also be score-dependent
e.g. precision and recall for utilizing trade-off i.e. for
evaluation that tends to reward precision on cost of
recall and vice versa. If no features are known to
impact metrics, simply use all available features.
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4. Construct t different partitions on the segmentation
set C, each partition according to one feature from
F, i.e. according to the grade of occurrence of the
feature in the segmentations. One gets the set of par-
titions P = {P1, .., Pt}. Each partition should have
the same number of subsets s. The function Pij(x)
assigns the segmentation x to the subset j according
to partition i.

Pij(x) =

{
1 x ∈ subset j of partition i
0 otherwise

(1)

5. Construct t random partitions P̌ = {P̌1, .., P̌t} by ran-
domly assigning segmentations to s equal subsets in
each partition. The function P̌ij(x) that assigns a seg-
mentation x to the subset j of the random partition i
is defined by

P̌ij(x) =

{
1 x ∈ subset j of random partition i
0 otherwise

(2)

6. For each metric m ∈ M, for each partition i ∈ P, rank
the subsets j according to the average of the individ-
ual ranks in each subset using the rank function

smi(j) = ( ∑
Pij(x)=1

r(m, x))/nij (3)

where x ∈ C are the individual segmentations and
nij is the number of segmentations in the subset j of
Partition i. Now, use the rank averages from Equa-
tion 3 to compute the rank structure R = R(i, j, m)
that gives the rank of subset j of partition i mea-
sured by metric m according to descending rank av-
erage. Analogously, Ř = Ř(i, j, m) gives the rank of
subset j of the random partition i measured by met-
ric m. Note that ranking the subsets using the aver-
ages of the individual ranks in each subset is a rank-
ing method inspired by the Mann-Whitney-Wilcoxon
(MWW) test [18]. This is because straightforwardly
computing the ranks from score averages is sensitive
to outliers and may produce unreasonable rankings
if the scores are not normally distributed [19].

3.2 Inferring metric bias: Now, the rank structures Ř
(rankings of the random partitions) and R (rankings
of the non-random partitions) provide a statistical ba-
sis to infer metric bias by analyzing how rankings of
the different metrics and different partitions are corre-
lated. The analysis is primarily based on comparing
two correlations: the average of the rank correlations
given the random partitions Ř (we will call this corre-
lation the base correlation Ǩ) and the rank correlation

given a particular partition R (we will call this correla-
tion the biased correlation K). They are given by

Ǩ(mt) =
1

|P̌|.|M| ∑i∈P̌
∑

m∈M
r[Ř(i, ., mt), Ř(i, ., m)] (4)

K(mt, p) =
1
|M| ∑

m∈M
r[R(p, ., mt), R(p, ., m)] (5)

where mt is the metric being evaluated, p is a given
partition, and r(x1, x2) is the Pearson’s correlation co-
efficient between the rankings x1 and x2 (the point de-
notes all possible values, e.g. R(p, ., m) means all pos-
sible subset ranks in partition p measured by metric m)

Now, we define the overall bias of metric mt to be
the average of the absolute correlation change B(mt)
which is given by

B(mt) =
1
|P| ∑i∈P

abs[K(mt, i)− Ǩ(mt)] (6)

Finally, the metrics in M are ranked according to
their overall bias, where the metric with the lowest bias
is the most suitable.

3.3 Discussion: To understand the key idea, let’s
think about the following two cases: Case 1, partition-
ing the segmentations randomly. Case 2, partitioning
the segmentations according to a particular property
(e.g. class imbalance in the underlying segmentations).
Given a particular metric m, the base correlation Ǩ(m)
given by Equation 4 (related to Case 1) depends on the
nature of the metric and is not affected by the proper-
ties of the segmentations, since the partition is random.
Now, if this correlation changes when we consider
Case 2 (i.e. biased correlation K given by Equation 5),
then the change is caused by the impact of the property
used for partitioning (in this case class imbalance) on
the metric and therefore it characterizes the bias of the
metric towards/against this property. If many parti-
tions (many properties) are used, then the sum of the
correlation differences is a measure of the overall bias
for the given metric.

4 Experiments

In this section, the proposed method is demonstrated
and tested with a real example, namely a set of 229 au-
tomatic brain tumor segmentations (MRI 3D volumes)
from the BRATS2012 challenge1. The segmentations
correspond to 47 medical cases and were produced by

1MICCAI 2012 Challenge on Multimodal Brain Tumor Segmenta-
tion, www2.imm.dtu.dk/projects/BRATS2012
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five different algorithms participating in BRATS chal-
lenge. To build the rank structure (described in Sec-
tion 3.1), all segmentations were evaluated against their
ground truth segmentations using 18 metrics (listed in
Table 1) to get the score matrix s (Step 1). Then global
ranks were calculated from scores to get a ranking per
metric r (Step 2). A set of 7 properties, namely seg-
ment size, noise, class imbalance, connected compo-
nent count, point variance, sphereness, and recall, was
defined (Step 3). Now, 7 partitions of the segmentations
were constructed each time using one of the defined
properties. Each consists of 10 subsets with 229

10 ≈ 22
segmentations (Step 4). A random partition with 10
equal subsets was constructed (Step 5). For each par-
tition, the subsets were ranked using the sum of indi-
vidual global ranks r to get 18 rankings per partition
(126 rankings in total). The random partition was also
ranked to get 18 rankings (Step 6). To infer metric bias,
Equations 4, 5, and 6 in Section 3.2 were applied to
the resulting rank structure. The result of this step is a
metric list ranked according to bias.

To validate the suitability ranking produced by the
proposed approach, a manual ranking done by a ra-
diology expert was used: for each medical case, the
five corresponding segmentations were ranked by their
quality from a medical point of view (we call these the
manual rankings). Analogously, for each medical case,
18 rankings of the five segmentations were produced
each time using one of metrics (we call these the met-
ric rankings). The average correlation between manual
rankings and metric rankings was computed for each
metric and finally the metrics were sorted according to
this average correlation. The resulting metric ranking
(Table 1 column ’manual’) was used as a ground truth
suitability ranking of the metrics to validate the auto-
matic ranking. Table 1 column ’automatic’ contains for
each metric the bias (Equation 6) and the corresponding
suitability rank computed according to ascending bias.
A moderate to strong correlation between the two rank-
ings can be observed. The six best metrics are the same
in both rankings. This correlation shows that metrics
with low bias produce rankings that are more corre-
lated to manual rankings than others.

5 Conclusion and future work

For evaluating segmentations, metrics can be chosen
according to their bias (Equation 6) toward/against the
properties of the segmentations being evaluated. Test
results show that the ranking produced by metrics with
low bias generally have higher correlation with man-
ual ranking than rankings produced by other metrics.
In future work, the method will be tested with seg-

metric manual automatic
correl. rank bias rank

Cohen’s Kappa 0.818 1 33.5 2
Adjusted Rand Index 0.818 1 33.1 1
Interclass Correlation 0.818 1 33.5 2
Probabilistic distance 0.802 2 34.7 5
Dice 0.800 3 33.6 3
Average Distance 0.798 4 33.9 4
Accuracy 0.791 5 64.0 14
Rand Index 0.791 5 64.0 14
Variation of Inform. 0.791 6 62.0 13
Mutual Information 0.753 7 46.5 12
Mahalanobis Distance 0.701 8 37.7 7
Global Consistency Err. 0.670 9 69.8 15
Hausdorff Distance 0.663 10 35.5 6
Area u. curve (AUC) 0.647 11 42.0 8
Sensitivity 0.615 12 44.4 10
Precision 0.608 13 44.5 11
Volumetric Similarity 0.590 14 43.6 9
Specificity 0.398 15 78.6 16

Correl. btw. manual & automatic ranking 0.607

Table 1. Manual and automatic metric suitability rank-
ings. In column ’manual’, the average correlation be-
tween metric rankings and the manual rankings as well
as corresponding suitability ranks according to decend-
ing correlation. In column ’automatic’, the metric bias
calculated automatically by the proposed method as
well as the ranks according to ascending bias (detailed
data and results available in [20])

mentations of other types and validated against rank-
ings from different experts. A further issue to be in-
vestigated in future work is the influence of weight-
ing the properties in Equation 6 on the metric suit-
ability ranking, if it is known that particular proper-
ties are more/less important for the segmentation goal.
For example, the manual ranking used to validate this
method is done by a radiologist who may emphasise
recall on cost of precision to assure that the tumor is
completely removed. In this case weighting the recall
and precision properly could improve the result.
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