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ABSTRACT

The visualization of (ultra) high-resolution compositions cre-
ated from multiple input bitstreams requires several decoders
at the receiving device. Therefore, not all devices can prop-
erly display such compositions. To address this problem, the
input streams are decoded, merged into a single video, and
re-encoded by a transcoder in the network. However, this ap-
proach requires a computationally complex re-encoding step.
To reduce this complexity, information from the input bit-
streams can be reused during transcoding. In HEVC, sim-
ply reusing the original encoding information is not compres-
sion efficient if the inserted content is not aligned with the
grid of coded blocks. In this paper, we applied feature selec-
tion based on a decision tree, which was used in a fast HEVC
transcoding model for misaligned content. The performance
varies depending on the shift and average transform size in
the original sequence, resulting in complexity reductions of
up to 76%.

Index Terms— HEVC, picture composition, transcoding

1. INTRODUCTION

In many industries such as video surveillance, it is necessary
to present data from different encoded video sources on a sin-
gle display. This means that all video sources must be de-
coded by the receiving device. However, depending on the
device, the number of available decoders is limited, which
makes it harder to decode all input streams in parallel. More-
over, if the video sequences have to be overlaid on top of
each other, only parts of some sequences are needed by the
receiver. Therefore, to save bandwidth and to allow devices
with a very limited amount of decoders to properly display
a composition of video sequences, the encoded bitstreams
can be merged into one bitstream in the network. To accom-
plish this, the input bitstreams are transcoded by re-encoding
a composition of the decoded bitstreams. Since the multiple
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input streams are combined into one composition, the client
devices require only a single decoder.

Simply re-encoding the composition is a computationally
complex operation. Moreover, to improve compression effi-
ciency, bitstreams are encoded with High Efficiency Video
Coding (HEVC), which offers a bit rate reduction of 50%
for the same perceptual quality compared to its predecessor
H.264/AVC [1]. However, HEVC has a higher computational
complexity compared to older video compression standards,
which makes it crucial to reduce the transcoding complexity.

A common approach to achieve complexity reduction is
by reusing information from the input bitstreams to simplify
the re-encoding step [2–4]. To exploit correlation between in-
put and output bitstreams, machine learning techniques have
often proved to be a useful tool [5–9]. Previous work on
transcoding compositions mostly focused on the H.264/AVC
compression standard. Solutions for video insertion included
a partial re-encoding transcoder (PRET) scheme [10], guided
encoding [11], and techniques based on Flexible Macroblock
Ordering and Variable Length (De)coding [12]. For HEVC,
previous work has determined that encoding decisions can
easily be reused if the inserted content is properly aligned
with the grid of Coding Tree Units (CTUs) [13]. However, if
the inserted content is no longer aligned with the CTU-grid,
efficiently reusing information such as the Coding Unit (CU)
structure is not trivial.

In this paper, we focus on the misalignment with the CTU-
grid of the inserted content. We propose a fast pixel-domain
technique for re-encoding the misaligned sequence based on
features selected with a decision tree. To prevent other se-
quences in the composition from biasing the results, we de-
code a single input bitstream and spatially shift the video by
padding the top and left edge of the picture. The complex-
ity reduction of the re-encoding is achieved by exploiting the
correlation between the information in the original encoded
bitstream and the CU structure of the shifted bitstream. The
technique determines both a stopping and splitting criterion
for evaluating CUs in the encoder.

The rest of the paper starts with a brief introduction to
HEVC. In Section 3 we then present the analysis which leads
to the implementation of our model. This model is evaluated
in Section 4. Finally, we give our conclusion in Section 5.
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Fig. 1. The CTU-grid of the sequence on the right (full lines)
is misaligned with the grid of the composition (dashed lines).

2. HIGH EFFICIENCY VIDEO CODING

HEVC is a new video compression standard offering better
compression efficiency compared to its predecessors [1]. To
achieve this, HEVC uses a more flexible scheme for divid-
ing the picture into blocks [14]. The picture is first divided
into CTUs of 64 × 64 pixels, which are recursively split
into smaller CUs according to a quadtree structure, with the
smallest possible block being 8 × 8 pixels. Each CU has an
associated prediction mode (intra or inter) and is split into
one of the eight Prediction Unit (PU) sizes. Depending on
the mode of the CU, each PU contains either intra- or inter-
prediction information. For residual coding, each CU is also
recursively split into Transform Units (TUs) according to a
quadtree structure, with the smallest TU size being 4 × 4
pixels. For each CTU, the HEVC-encoder determines the
block structure with the optimal compromise between bitrate
and distortion, which results in the increased complexity of
HEVC compared to its predecessors.

In the rest of the paper, the depth of a block refers to the
number of times a CTU has been split. Therefore, for CUs
and TUs, depth 0 refers to a block of 64× 64 pixels, depth 1
refers to 32× 32 pixels, up to depth 4 for a 4× 4 block.

3. ANALYSIS AND MODEL IMPLEMENTATION

To combine several input video sequences into a composition,
two operations can be used. Video sequences can either be
placed next to one another, or overlaid on top of each other.
The combination of these two operations results in an arbi-
trary composition. However, in both cases the video sequence
that was inserted into the composition might be misaligned
with the CTU-grid (Fig. 1). Therefore, it is not efficient to
simply reuse the CU structure of the input sequences.

To analyse the effect of misalignment on the CU structure,
an input bitstream is decoded, shifted, padded at the top and
left edge of the picture, and re-encoded with the same quan-
tisation parameter as the original bitstream. This means that
both the CU structure of the re-encoded bitstream as well as
the encoding information of the input bitstream is available.
Machine learning techniques such as decision trees can then
analyse which input results in a certain CU structure [15]. To
achieve this, the image from the re-encoded bitstream is di-
vided into blocks of 64× 64, 32× 32 or 16× 16 pixels, once
for each block size. Based on the output CU structure, it is

possible to determine if such a block is split. This split flag
serves as the output for the decision tree algorithm J48. To
determine the split flag, the decision tree uses features from
the co-located block in the input bitstream.

The decision tree was trained on the first fifty frames
of BasketballDrillText, BlowingBubbles, BQSquare, Cactus,
CrowdRun, FourPeople, Johnny and RaceHorsesC. These
sequences were encoded with the HEVC reference software
(HM12) [16] using a GOP-structure of IPPP and QP-values
of 22, 27, 32 and 37. They were re-encoded with a shift of
either 8, 16 or 32 pixels in both x- and y-direction.

The decision tree algorithm was initially supplied with
twenty-one features. The first two features are the shift of
the output bitstream and the considered block size. The third
feature is the intra fraction of the co-located block, which in-
dicates the percentage of pixels that were intra-coded in the
input bitstream. The other eighteen features consist of the
mean, variance, maximum, minimum, and dominant CU, PU,
and TU depth, as well as the variance of the motion vectors,
and both variance and the mean of the variance of the residual.

Since the decision tree algorithm considers different kinds
of block sizes in the output bitstream, it is possible that the
co-located block contains parts of several CUs in the input
bitstream. Therefore, the features based on co-located blocks
are all weighted. For instance, the mean of the CU depth is
calculated by dividing the original input stream into blocks
of 8 × 8 pixels and assigning a depth to each block based on
the CU structure. When examining the co-located block of a
block in the output bitstream, the resulting mean is the mean
of the depths of the 8× 8 blocks within the co-located block.

Based on the decision tree, the most important features
were selected from the initial set: the shift, block size, intra
fraction, and the mean CU and TU depth. By considering only
these features, the following observations yielded a model to
predict the split flag for each block in the output bitstream.

1. If the shift of the video sequence is a multiple of the
block size, the CU structure of the input bitstream can
be copied for those block sizes with a confidence of
more than 85%. This indicates that a shift of N pixels
causes all CUs ofN×N and smaller to remain aligned
with an N ×N grid.

This rule is implemented by retaining the CU structure
for block sizes that are equal to or smaller than the shift.

2. If the co-located block contains both intra- and inter-
coded pixels, the CU is often split. This behaviour is
likely caused due to the differences in coding mode
within the co-located block making it harder to find
a good prediction mode for the CU in the output bit-
stream. This observation has a confidence of more than
93% for a shift of 32 pixels with all block sizes and for
a shift of 16 pixels with a block size of 16 pixels.

In the implementation of the model, blocks that satisfy
the above requirements are always forced to split.
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3. Besides the previous two observations, the mean TU
depth (mTU) in the co-located block also influences the
splitting behaviour. A higher depth (a smaller trans-
form size) leads to a higher chance to split, whereas a
lower depth (bigger size) means that the block might
not be split. If mTU is greater than a certain value αb

for block size b, the block should be split. On the other
hand, if mTU is less than a value βb, with βb ≤ αb, the
block should not be split. This rule has a high confi-
dence for output block sizes of 64 and 32 for all three
shifts. The rule is not valid for block sizes of 16.

This rule was implemented by forcing the encoder to
split a CU if mTU is greater than αb, to stop splitting
if mTU is less than βb, and to test both options if mTU
lies between both values. Moreover, αb and βb were
replaced as follows, with db the depth associated with
block size b (Section 2) and b ∈ {64, 32}:{

αb = γb + tsplit
βb = γb − tstop

with γb = (db + 1)

The value γb was defined such that γb ∈ [βb, αb].
Thresholds tsplit and tstop, both ∈ [0, 1], try to account
for a possible variability of αb and βb depending on the
video sequence. Consequently, the splitting behaviour
depends on these two variable thresholds.

4. RESULTS

The model was evaluated on the full sequences as used in
Section 3, as well as on Kimono, ParkScene, BQTerrace,
PartyScene, RaceHorses, BasketballPass, KristenAndSara
and ChinaSpeed. All sequences were encoded with the same
parameters as in Section 3. The sequences were also re-
encoded with no shift, so the original CU structure was
reused. To allow measurements of complexity reduction
and Rate-Distortion (RD) performance, all sequences were
re-encoded with an unmodified reference encoder.

To determine the complexity reduction achieved by the
model, the encoding time of the fast encoder is compared to
the encoding time of the reference encoder. Since the time to
decode and shift the original bitstream is negligible compared
to the re-encoding step, accounting only for encoding times is
a good indicator for complexity. The fast encoder is compared
to the reference encoder in terms of time saving (TS):

TS(%) =
Tref (ms)− Tfast(ms)

Tref (ms)

The difference in RD performance between sequences en-
coded with the reference encoder and sequences encoded with
the fast encoder is measured in Bjøntegaard delta (BD) rate
[17]. This shows the average bitrate difference between four
encoded sequences of each set over the measured PSNR-Y
range. To calculate the PSNR-Y for a sequence, the shifted

bitstream is decoded, shifted back by removing the padding,
and compared to the original, uncompressed video.

For the majority of test sequences, enforcing a stop too
early has a worse impact on quality than incorrectly forcing
a split, whereas the impact on complexity is similar. Chang-
ing the split threshold tsplit causes the BD-rate to vary less
than the stop threshold tstop (Fig. 2(a)). On the other hand,
the complexity reduction varies similarly for both thresholds
(Fig. 2(b)). Therefore, the best compromise between BD-
rate and complexity reduction is achieved for tstop ≥ tsplit.
These thresholds can be chosen depending on the quality and
complexity requirements of the use case. In the rest of this pa-
per, tsplit = 0 and tstop = 0.5 are selected as representative
values.

(a)

(b)

Fig. 2. BD-rate (a) and time saving (b) for the sequence
ParkScene with a shift of 16 pixels. Enforcing a stop (smaller
tstop) has a more negative impact on the BD-rate than en-
forcing a split (smaller tsplit), whereas both have a similar
positive effect on the time saving.
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BD-rate (%) Time saving (%)

Sequence Average TU depth No shift Shift32 Shift16 Shift8 No shift Shift32 Shift16 Shift8

RaceHorses 2.25 0.95 1.73 2.28 1.57 69.82 70.54 66.85 42.53
BQSquare 2.17 0.74 2.73 2.32 2.15 71.75 72.30 69.78 49.19
BlowingBubbles 2.16 0.79 1.91 2.01 1.46 70.90 71.40 68.92 45.33
CrowdRun 2.12 0.56 0.75 1.08 0.51 70.89 69.36 67.72 44.05
PartyScene 2.05 0.58 0.80 1.41 0.67 72.63 71.79 68.16 47.73

Average 0.72 1.58 1.82 1.27 71.20 71.08 68.29 45.77

RaceHorsesC 1.92 1.14 1.55 2.35 1.57 72.30 70.04 65.91 46.62
BasketballPass 1.85 0.83 1.48 2.49 2.26 71.40 71.11 67.43 44.11
BasketballDrillText 1.53 1.04 1.51 2.94 2.53 74.08 71.49 67.17 49.81
ChinaSpeed 1.51 1.76 2.30 3.10 2.29 75.07 72.11 68.03 53.57
BQTerrace 1.50 1.45 2.01 1.92 1.81 75.24 72.15 70.24 56.15
ParkScene 1.42 1.51 1.93 2.91 2.28 74.72 71.62 69.42 54.40
Cactus 1.30 1.29 2.19 3.69 2.75 74.90 71.41 69.69 54.39
Kimono 1.12 1.15 1.85 2.93 3.30 75.80 71.45 69.30 57.33

Average 1.27 1.85 2.79 2.35 74.19 71.42 68.40 52.05

FourPeople 0.67 2.02 4.15 7.16 7.43 78.54 75.46 72.86 62.06
KristenAndSara 0.57 2.86 4.56 7.59 9.01 78.92 75.05 71.94 65.59
Johnny 0.50 3.20 4.77 8.43 12.87 79.38 76.26 74.28 67.15

Average 2.69 4.49 7.73 9.77 78.95 75.59 73.03 64.93

Table 1. Results for tsplit = 0 and tstop = 0.5. The model produces better quality (a lower BD-rate) for a smaller transform
size (higher TU depth) in the input bitstream. The type of shift influences the performance of the method as well. Shifts that let
more blocks remain aligned with a grid of their own size produce a better result.

Table 1 shows the BD-rate and TS for all tested sequences.
The sequences are ordered according to descending average
TU depth. The BD-rate and TS are given for transcoding
without shifting, as well as for three different shifts.

The results show that the model has a better RD per-
formance for smaller transform sizes. For instance, the
sequences which contain many small blocks (average TU
depth greater than 2) have an average BD-rate of 1.58% for
a shift of 32 pixels. On the other hand, the sequences with
larger blocks (average TU depth less than 1) have a BD-rate
of 4.49% for the same shift. However, the sequences with
larger blocks have an average TS of 75.59% for a shift of
32 pixels, whereas the sequences with smaller blocks have
an average TS of 71.08%. This indicates that for input bit-
streams with predominantly large TU sizes, the model stops
splitting early. In that case, bigger CU sizes will be selected
more often. Consequently, there are less CUs for which the
PU- and TU-structure must be evaluated.

The model also performs better for shifts that allow more
blocks to remain aligned with a grid. For no shift and an av-
erage TU depth greater than 2, the TS is 71.20% while the
BD-rate is 0.72%. This quality loss is due to requantisation
slightly altering the optimal CU structure compared to the in-
put bitstream, and because the Sample Adaptive Offset filter
and some mode decisions in the HM software use information
from the skipped process. For a shift of 32 and 16 pixels, the
average TS decreases to 71.08% and 68.29%, while the BD-

rate increases to 1.58% and 1.82%. This behaviour is likely
caused by the preservation of the original CU structure for
block sizes smaller than the shift (Section 3). For a shift of 8
pixels, the BD-rate decreases to 1.27%. However, the TS is
reduced to 45.77%, because the splitting behaviour for block
sizes of 16 pixels is not determined by the TU depth. Instead,
the CUs are evaluated at both depth 2 and 3.

5. CONCLUSION
Our analysis determined that the transform size is a good indi-
cator for the CU structure of the output bitstream. Moreover,
the original CU structure is better retained when good grid
alignment is maintained for more block sizes.

By evaluating the model, we found that the behaviour
varies depending on the average size of the TUs in the origi-
nal bitstream. Bigger block sizes in the input stream result in
worse quality because the model causes the CUs in the out-
put stream to stop splitting too early. Moreover, incorrectly
forcing the encoder not to split a CU has a worse impact on
the quality than erroneously forcing a split. However, both
forcing a stop or a split have a similar impact on complexity
reduction. On average, BD-rates below 2% with complexity
reductions up to 71% are achieved for sequences with a small
average TU size (average TU depth greater than 2). For a
bigger average TU size (average TU depth less than 1), the
BD-rate increases up to 10%, while the complexity reduction
for transcoding shifts reaches up to 76%.
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