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ABSTRACT
This article introduces a new contrast enhancement algo-

rithm of tone-preserving entropy maximization. Its design
objective is to present the maximal amount of information
content in the enhanced image, or being optimal in an
information theoretical sense, while preventing the loss of
tone continuity. The resulting optimization problem can be
graph-theoretically modeled as the construction of K-edge
maximum-weight path, and it can be solved efficiently by
dynamic programming. Moreover, the proposed algorithm is
made more effective by being combined with a preprocess
of image restoration that aims to correct quantization errors
caused by the analog-to-digital conversion of image signals.
Empirical evidences are provided to demonstrate the superior
visual quality obtained by the new image enhancement
algorithm.

I. INTRODUCTION
In image enhancement the presentation of visual signals

is manipulated or improved to better suit the needs of
users engaged in specific tasks. Among all subjects of
image processing and computer vision, image enhancement,
despite its long history, is technically least rigorous; most
of image/video enhancement techniques are more an art
than science. This is largely because criteria for good image
representations are highly subjective and often vary in ap-
plication problems. Due to this lack of generality and rigor
many image enhancement techniques are not robust and have
undesired side effects. In this research, we set out to address
these shortcomings and introduce a new, more principled
approach for image enhancement.

For most users and in most applications the main purpose
of image enhancement is to bring conspicuity to features and
details that are otherwise obscured in the original image. In
this case a common approach of image enhancement is the
point process of grey level transform, as exemplified by the
histogram equalization technique[1]. This classic approach
was reexamined in depth and cast into a framework of op-
timal contrast-tone mapping (OCTM) by Wu [2]. In OCTM
an integer-to-integer transform j = T (i), which maps input
grey level i to output grey level j, is so constructed that
the expected difference E{T (i+1)−T (i)}p is maximized,

where the expectation is taken over the probability mass
function p (histogram) of grey levels. Regardless the choice
of the grey level transform T (i), for any given pixel its
processed value depends only on its original value, indepen-
dent of its spatial context. Because of this property image
enhancement via grey level transform is classified as context-
free in [2].

An important criterion in the design of image enhance-
ment algorithms is entropy, which is meaningful not only
information-theoretically, but also psychovisually if the quest
of enhancement is the conspicuity of image details. This
is because the entropy, as a statistical measure for the
information content of the image signal, can predict the
richness of details exhibited by the processed image. In
this line of reasoning, the design objective of grey level
transform T (i) ought to be the maximal entropy H(p) under
suitable constraint(s) to prevent pathological cases, p being
the probability mass function of grey levels of the processed
image. But considering that T (i) is context free, the fol-
lowing two conditions are needed so that T (i) retains the
spatial structures of image signal; otherwise the white noise
image would be produced in pursue of maximum entropy. 1.
T (i) is a mathematical function, i.e., single valued, so that it
cannot produce random noises; 2. T (i) preserves the relative
ranking of input intensity levels, namely, T (i) ≤ T (j) if
i < j, so that enhanced local details do not alter the two-
dimensional spatial patterns of the original image. Now these
conditions would seemingly result in a paradox: the entropy
is maximized by the identity transform i = T (i), i.e., doing
nothing, if the input image and display device have the same
number of grey levels, which is by far the most common
case in practice. This is because any other single-valued
transforms that map two or more input grey levels into one
output grey level can only reduce the entropy.

However, the above difficulty turns out to be only opera-
tional, rooted in the digitization of the input image signals;
it becomes a nonissue if the histogram is replaced by a
continuous probability density function. Tracing back to the
physical problem the light intensity is a continuous quantity
in the first place prior to analog-to-digital conversion. If
the quantization resolution of the input discrete pixel values
is upconverted significantly beyond that of the display by
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an image restoration process, then the histogram of the
restored image will have far more bins than the output grey
levels of the display. As such, the transform function T (i)
will necessarily map multiple adjacent grey levels of the
restored image to a same output grey level, and consequently
the entropy maximization-based image enhancement will no
longer have a trivial solution of i = T (i). Our insight of
aiding image enhancement by image restoration fills a vital
missing link towards the development of the new image
enhancement approach of this paper.

II. UPCONVERSION OF QUANTIZATION
RESOLUTION

As discussed in the introduction, in the maximum entropy
approach for image enhancement, it is necessary that the
input histogram has more grey levels than the display. For
input images of the same bit depth as the display, the quanti-
zation resolution of pixel values needs to be increased. Here
the objective is to estimate the underlying continuous light
amplitude values and requantize them into higher resolution.
This is a problem of image restoration in the domain of pixel
amplitude. Without multiple exposures like in acquisition of
high dynamic range images, we need to make the restoration
possible by exploiting other form of signal correlations.
For most natural images the underlying two-dimensional
luminance signal is highly smooth on object surfaces, and
even on object boundaries it is also smooth along the edge
trajectories. Therefore, an edge-directed low-pass filtering
technique is suited to estimate the continuous luminance
image from the observed grey level image of insufficient
amplitude quantization resolution.

The underlying continuous luminance image I is modeled
as an piece-wise autoregressive (PAR) process

I(x, y) =
∑

(i,j)∈S(x,y)

αi,jI(x+ i, y + j) + η (1)

where αi,j are the model parameters, (x, y) is the pixel
location and S(x, y) is a local neighborhood of (x, y),η is the
model fitting error. The PAR model is locally adaptive and it
can preserve edges well [3]. Assuming that the 2D signal I
is stationary in a local area N(x, y) surrounding (x, y), the
adaptive model parameters for I(x, y) can be estimated using
samples drawn from the input image J in locality N(x, y).
The pixel values of J carry errors e = I−J that are caused
by the analog-to-digital conversion, imaging sensor noises,
and possibly compression noises. As these error causes are
statistically independent, e is white Gaussian and of zero
mean, hence we adopt the following least-squares estimation

argmin
α

∑
(x,y)∈N(x,y)

‖J(x, y)−
∑

(i,j)∈S(x,y)

αi,jJ(x+i, y+j)‖22

(2)
to obtain the PAR model parameters α.

Having the above estimated PAR model parameters, the
continuous luminance image I can be restored based on the

model. Although the PAR model is piecewise, all luminance
values of I in the entire image domain are restored jointly
as the following

min
I
‖I−AI‖22 + λ‖I− J‖22, (3)

where matrix A consists of PAR model parameters; the i-
th row of A is the estimated parameter vector αi at pixel
location i.

The above PAR-based image restoration method is not
the only choice; it can be replaced by other restoration
methods, such as those based on popular sparsity signal
processing, as long as they generate a real-valued lumi-
nance image. The remaining task is to enhance the input
image J by a global transform function T (·) to requantize
the restored image I into K discrete levels, K being the
number of grey levels of the display device (K = 255
for typical optoelectronic displays). Note that in general the
upconversion of quantization resolution maps an original
grey level into different finer grey levels. Although T (·)
is single-valued with respect to the histogram of restored
image of high amplitude quantization resolution, it is no
longer so with respect to the histogram of the original
input image. This is because an original grey level can
be converted and requantized to different finer grey levels
at different pixel locations. Furthermore, since the restored
image of higher amplitude resolution is generated by a
spatial operator that exploits sample correlations, the refined
pixel values depend on the local waveforms. In this way, the
classic image enhancement approach of grey level transform
becomes context-sensitive and hence more adaptive to the
two-dimensional image waveform.

III. ENHANCEMENT BY TONE-PRESERVING
ENTROPY MAXIMIZATION

The amplitude quantization resolution upconversion de-
scribed in the proceeding section is only a necessary pre-
processing for the image enhancement approach of entropy
maximization. The restored image I is not our final result;
image I will be enhanced by the global grey level transform
T (·) that maximizes the entropy of the output image under
certain constraint as we reasoned in the introduction.

For a display of K grey levels and given the probability
density function pI of the grey levels of the restored image
I, the classic histogram equalization transform

k = T (i) = K

∫ i

0

pI(t)dt (4)

will maximize the entropy of the resulting image. But the
problem is more complex than histogram equalization. As
well known to the users histogram equalization is prone
to contour artifacts. This is because histogram equalization
can map a large dynamic range of luminance into a single
grey level. This problem was treated in [2], where the
author argued that the tone continuity is another aspect of
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Fig. 1. The graph-theoretical representation of maximum entropy requantization problem.

perceptual image quality that should be balanced against
high contrast and proposed to bound tone distortion in
grey level transform. Similarly, we impose an upper bound
τ on the tone error to constrain the solution of entropy
maximization.

The proposed tone-preserving entropy maximization algo-
rithm is one of constrained discrete optimization. The input
of the algorithm is the histogram of the restored image I;
this histogram is generated by uniform quantization of the
luminance range into N bins, N >> K. In this setting,
a grey level transform T is defined by an ordered integer-
valued vector s = (s1, s2, · · · , sK−1) such that all input grey
levels i ∈ [sk, sk+1) are mapped to output level k, written
as T (sk, sk+1) = k, 0 ≤ k < K, where s0 ≡ 0, sK ≡ N .
Denote by P [i, j) the probability that a grey level in I falls
into the interval [i, j). Then, the image enhancement by tone-
preserving entropy maximization (TPEM) can be formulated
as the following constrained optimization problem:

min
s

K−1∑
k=0

−P [sk, sk+1)logP [sk, sk+1)

subject to sk+1 − sk ≤ τ ∀k
(5)

where τ is the above mentioned tone distortion bound.
The problem of (5) can be modeled as a K-edge

maximum-weight path in the directed acyclic graph (DAG),
denoted by G(V,E) and shown in Fig. 1. The nodes of the
DAG vertex set V are grey levels of the input histogram,
labeled by 0, 1, 2, · · · , N . A pair of grey levels i and j,
i < j, induce an edge e(i, j) ∈ E if the grey levels in
[i, j) are permitted to be mapped to an output grey level k
by T , i.e., T (i, j) = k. Edge e(i, j) is assigned a weight
−P [i, j) logP [i, j). In the construction of the above DAG
G(V,E), we impose the upper bound on tone distortion by
not allowing any edge from node i to node j if j − i > τ .
The solution of the optimization problem (5) corresponds to
a path from 0 to N of K edges such that the sum of the
edge weights is maximal, which can be effectively solved
by dynamic programming [4].

IV. EXPERIMENTAL RESULTS

(a) original image(6.61) (b) HE(5.76)

(c) OCTM(6.54 ) (d) TPEM (7.56)

(e) original (f) HE (g) OCTM (h) TPEM

Fig. 2. The visual quality comparison between three tech-
niques on dark indoor image.

Experiments are conducted to evaluate the proposed
TPEM image enhancement technique in comparison with the
traditional HE technique and the recent OCTM technique
[2]. Diverse range of natural images are tested, three of
which are presented in Figs.2 through 4 together with the
output images of the three techniques, representing dark
indoor, over-exposure and back-lighting conditions respec-
tively. The regions enclosed by boxes are zoomed in for
closeup visual examination.

The entropies of the tested image enhancement techniques
are listed in Table 1. As we discussed in the introduction,
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(a) original image(6.84) (b) HE (6.45)

(c) OCTM (5.92) (d) TPEM ( 6.93)

(e) original (f) HE

(g) OCTM (h) TPEM

Fig. 3. The visual quality comparison between three tech-
niques on back-lighting image.

Original HE OCTM TPEM
Indoor 6.61 5.76 6.54 7.56

Back Lighting 6.84 6.45 5.92 6.93
Over-exposure 7.36 7.14 5.85 7.57

Table I. Entropies of the results of different image enhance-
ment techniques.

both HE and OCTM techniques decrease the entropy of
the original image as they cannot split a histogram bin. In
contrast, the proposed TPEM algorithm can increase the
entropy of the original image thanks to the quantization
resolution upconversion. The increased entropy appears to
correspond to superior image quality of TPEM. All three
images have rather large dynamic range; it is challenging to
enhance details in all grey level ranges. HE tends to either
overexpose the objects in lighter regions (see the sculpture
in Fig. 2 and the face in Fig. 3) or underexpose the objects
in darker regions (see the lawn in Fig. 4). Although OCTM
offers in general better perceptual quality than HE, but it is

(a) original image(7.36 ) (b) HE (7.14)

(c) OCTM (5.85) (d) TPEM (7.57)

(e) original (f) HE

(g) OCTM (h) TPEM

Fig. 4. The visual quality comparison between three tech-
niques on over-exposure image.

less robust and has inferior quality compared to TPEM (see
Fig. 3).

Also, it is evident that HE suffers from serious tone
distortions, creating false contours on smooth surfaces (see
the face and jacket in Fig.3, and the sky in Fig.4). This
is because HE does not restrict the maximum step size of
the transform function, allowing two close grey levels to
be mapped quite apart from each other. This weakness is
overcome by TPEM because it imposes an upper bound on
tone distortion in the entropy maximization process. In terms
of perceptual quality, TPEM appears to be the best of the
three methods by presenting fine detailed foreground objects
in natural-looking background.
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