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ABSTRACT

We propose a rotation and scale invariant method to locate people
lying on the ground. Unlike conventional human-shape detection
methods which assume that all human shapes are in upright position,
a person lying on the ground can have arbitrary orientation and pose.
Accounting for every possible body configuration would thus require
a huge training dataset that would be challenging to gather.

In this paper, we propose a method which increases the size of a
small training dataset and allows to detect multiple body poses. To
do so, our method increases the size of the dataset with a geometric
distortion method followed by a rejection sampling method. Then,
it automatically identifies K body configurations in the training set,
realign it in upright position and trains K SVM classifiers, one for
each body configuration. Lying pose detection is then performed by
considering a max pooling strategy across all K SVM classifiers.

Index Terms— Lying pose detection, perspective transforma-
tion, training set expansion, mean shift.

1. INTRODUCTION
In this paper, we aim at detecting people lying on the ground, an
important topic for several applications. One such application is fall
detection for elders and disabled people living in smart-homes [1, 2].
In 2012, a report from the World Health Organization revealed that
falls are the second leading cause of accidental-injury deaths world-
wide and that every year, no less than 37 million falls are severe
enough to require medical attention [3]. As a consequence, efficient
visual fall detection algorithms is a key element to support elders and
disabled to stay home. Lying pose detection can also be used in con-
junction with UAVs (unmanned aerial vehicle) for search and rescue
missions [4, 5, 6]. With a rising number of UAVs worldwide [7],
the need for robust and rotation-invariant object detection methods
is becoming a glaring issue.

Unfortunately, only few papers focus on the topic of lying pose
detection. In fact, state-of-the-art human-shape detectors mainly fo-
cus on pedestrians, rather than people lying on the ground [8, 9,
10]. Although similar to pedestrian detection, lying-pose detection
is much more difficult since it cannot assume that human shapes
are in upright position. Without this assumption, human shapes can
have arbitrary orientation and pose. Furthermore, depending on the
camera standpoint, human shapes can suffer from severe perspective
distortion (e.g. Fig. 1). Consequently, any common pattern recog-
nition system geared towards lying pose detection would require a
large training dataset in order to account for all possible body con-
figuration. However, since people do not normally lay on the ground,
such dataset would be challenging to gather. Also, as will be shown
in the results section, a part-based human shape detection method
such as [11] is far too slow to be useful in practice.

In this paper, we propose a method that answers the challenges
of human lying-pose detection. Also, we exploit the joints infor-

Fig. 1. Example of people lying on the ground with different orien-
tation, pose and perspective distortion.

mation to built a pose-specific classifier, which improves the detec-
tion performance, and increase the diversity of the image instance by
sample expansion. The method starts with a small annotated train-
ing image dataset, i.e. a dataset for which every person have been
cropped and labeled with a 15-joint skeleton. From there, the num-
ber of images in the dataset is increased by applying a series of per-
spective transformations. This simulates the effect of a moving cam-
era around the persons lying on the ground. Then, a D-dimensional
HOG feature is extracted from each body image and K different
body poses are localized with K-Means. From these data, a new se-
ries of D-dimensional points are generated with a rejection sampling
method [12]. Since these newly generated points corresponds to new
body poses, they further increases the richness of the dataset. Then,
K SVM classifiers are trained, one for each body pose. These K
SVM classifiers are then used to locate bodies lying on the ground
in new images. This is done following a max pooling criteria.

The paper has the following main contributions:

1. our upsampling method allows to increase the size of the
training dataset by accounting for an increased number of ge-
ometric distortion and body poses. Results obtained with this
upsampling strategy are two times more accurate than with-
out it.

2. By using K SVM classifiers, our method implements a
strongly supervised classification procedure whose results
are 32% more accurate than for a single SVM;

3. Unlike many other methods, our approach works on single
image and does not need a video feed.

2. RELATED WORKS
A limited number of papers have been published on the topic of ly-
ing pose detection. In fact, several such methods focus on the more

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20143377



specific problem of fall detection. For example, Wang et al. [2]
proposed a deformable part-based model for indoor applications.
Given the bounding box of a person lying on the ground, they in-
fer the lymbs of the person and then figure out the pose. Although
the method is decently accurate, results reported in the paper have
been obtained in a strickly-controlled indoor environment. Mirmah-
boub et al. [1] proposed a low-cost and easy-to-implement video-
based system for human fall detection. With a background subtrac-
tion method, they analyse the variation of human silhouette in time
and argue that a sudden increase in the size of the silhouette is a
strong indication that the person just fell on the ground. That be-
ing said, they do not explain how their system accommodates with
multiple people and partial occlusion. Toreyin et al. [13] proposed
a fall detection system based on the aspect ratio of a bounding box
surrounding human shapes. In this method, wavelet coefficients are
extracted from the bounding box and then fed to a Hidden Markov
Model for classification. Please consider the following survey pa-
per [14] for more details on fall detection methods.

The main inconvenient with fall detection methods is that they
need a video feed obtained by a fix camera. These methods are thus
inapplicable for videos with a very low frame rate and for applica-
tions for which the camera is moving like on a UAV.

As a solution, some authors proposed a single-image lying pose
detection method. Andriluka et al. [4] evaluated four state-of-the-art
pedestrian detectors, i.e., HOG+SVM [15], deformable part model
(DPM) [16], pictorial structure (PS) [17], and poselet based detec-
tion [18], in the context of vision-based victim detection from an
UAV. The evaluation results show that the two best performing de-
tectors are both built on the pictorial structures framework, and the
performance of DPM is better than PS. Also, part-based models are
better suited for victim detection than monolithic models [15] and
combining visual detectors with inertial sensor data of the UAV will
substantially improve the detection performance. That being said, as
will be shown in the results section, part-based model can be pro-
hibitively slow [11].

Another appoach is to consider the human lying pose detection
problem as a an activity recognition problem. For example, Qian et
al. [19] proposed a global feature named contour coding of motion
energy image, which is combined with local features and a multi-
class SVM classifier to recognizing human activities.

3. PROPOSED METHOD

As mentioned previously, the number of body configurations of peo-
ple lying on the ground can be very large. Bodies can have arbitrary
poses and arbitrary perspective distortion due to various camera po-
sitions. It is thus very challenging to come out with a complete train-
ing dataset which spans across all body configurations. So, instead
of creating such a large dataset, we start from a smaller dataset and
automatically increase its size with two procedures. The first proce-
dure (which we call geometric expansion) increases the number of
images in the training dataset by simulating a moving camera around
the persons lying on the ground. The second procedure is focused
on increasing the number of body poses with the help of a rejection
sampling method [12]. The underlying idea is to increase and enrich
the dataset on which the SVM classifiers will be trained on.

More specifically, the training stage of our method implements
the following four steps : 1) increase the number of images in the
training dataset with a geometric expansion method, 2) locate K dif-
ferent body poses from the training images, 3) increase the number
of poses with rejection sampling and 4) train K SVM classifiers on
the newly expanded dataset.

(a)

(b)

(c)

Fig. 2. (a) Annotated picture from our initial dataset. (b) Results
obtained after reprojecting the original image into 3 synthetic cam-
eras. (c) shows the images from (b) after being realigned in upright
position and normalized.

3.1. Training Step 1: Geometric Expansion

Images from the initial dataset are first manually annotated. That
is, every person lying on the ground is cropped and labeled with a
15-joint skeleton. This leads to a series of training images similar to
the one in Fig. 2(a). Then, each image is reprojected onto a virtual
camera that we move around in order to simulate various perspective
distortions.

This camera-reprojection procedure is inspired by Cai et al. [20].
According to their method, given a 3D world coordinate system
(Xw, Yw, Zw), a syntetic camera is positioned at (XS , YS , ZS) and
oriented toward the origin of the world. This camera can later on be
moved and reoriented. Then, an input image (like Fig. 2 (a) in our
case) is positioned on the XY plane of the world coordinate system.
With that configuration, each pixel of the image has a 3D position
(x, y, z) with z = 0 since the image is on the XY-plane. Each pixel
can then be reprojected onto the camera image plane following the
projection equation [21]

p = K[R|t]w (1)

where p = [x′, y′, 1]T is a camera pixel in homogeneous coordi-
nates, K is the camera intrinsic matrix, [R|t] the camera rotation-
translation extrinsic matrix and w = [x, y, z = 0, 1]T the image
pixel 3D position in homogeneous coordinates.

Cai et al. [20] showed that projecting an input image onto a cam-
era plane is equivalent to apply an homography matrix H ,

H =

⎡
⎣

−f cosκ −f sinκ 0
f cosϕ sinκ −f cosϕ cosκ 0
sinϕ sinκ − sinϕ cosκ −r

⎤
⎦ (2)

where f is the camera focal lenth, r the distance between the
camera and the origin of the world and (κ, ϕ) the rotation and ele-
vation angle of the camera. Here, f and r influences the scale of
the projected image while κ and ϕ influences the orientation of the
image.

Since the images in the training dataset are all normalized to the
same size (roughly 80× 160 in our case) only κ and ϕ need to vary
while r and f are set to a constant value. In our case, we take 8
samples between 0◦ and 80◦ for κ and 3 samples between 0◦ and
360◦ for ϕ.

Fig. 2 illustrates our geometric expansion procedure. Given a in-
put image (a), the geometric expansion procedure generates a series
of perspectively warped images in (b). These new images are then
aligned in upright positon and rescaled to a 80× 160 size as shown
in (c). The images in (c) are then added to the training dataset.
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Fig. 3. K-Means centroids for K = 10 classes.

Note that this procedure increases by a factor of 24 (8 × 3) the
size of the original training dataset. Also, since perspective transfor-
mations have also been applied to the 15-joint skeleton, these newly-
generated images all have a 15-joint skeleton.

3.2. Training Step 2 : Lying Pose Clustering
The goal of step 2 is to localize K different body poses out of the
M training images. To do so, each skeleton of the training dataset
is considered to be a point in a 15 × 2 dimensional space where 15
stands for the number of joints and 2 is the 2D position of each joint.

Given these M points in this 30 dimensional space, K-means
is used to identify K different poses. Fig. 3 shows the resulting
centroids of K = 10 classes. As can be seen, coherent body poses
have been identified such as standing, sitting, and curled position.
Let us mention that although similar, the third and fifth poses from
the left correspond to people laying on their back and people laying
on their front.

3.3. Training Step 3 : Lying Pose Expansion
Now that K different poses have been identified, a D-dimensional
HOG feature vector is assigned to each training image. HOG feature
vectors are computed as in [15]. Given these HOG feature vectors,
the goal of this step is to increase the number of poses on which the
SVM classifiers will be trained on. One way of doing so is by in-
creasing the number of points in this D-dimensional HOG feature
space. That being said, randomly generating new samples would
only add noise to the data. A correct way of increasing the number
of samples is by considering the underlying distribution of these data
points. In other words, given Y = {�y1, �y2, ..., �yn} a set of n HOG
feature vectors iid from P (�y), the goal is to generate a new set of
HOG samples Y ′ such that the distribution P (�y′) of the newly gen-
erated samples is close to P (�y). We do so with a rejection sampling
method [12].

Rejection sampling generates a series of samples iid of a pdf
P (�y) given a second pdf Q(�y) that is easier to sample (in our case,
Q(�y) is a uniform distribution). A key idea with rejection sampling
is that P (�y) < MQ(�y) where M > 1. Given p(�y) and Q(�y), the
sampling procedure goes as follows. First, generate a random sample
�yi iid of Q(�y) as well as a uniform random value u ∈ [0, 1]. If u <
P (�yi)
MQ(�yi

then keep �yi, otherwise reject it. This procedure is repeated

up until when the right number of samples has been generated.

Since in our case P (�y) is not known, we estimate it with a
Parzen window distribution [22]. We also use mean-shift [23] to find
the position �̂y where P (�̂y) is maximum. In this way, we get to com-

pute M as follows : M = P (�̂y)
1/|Ω| where Ω is the domain for which

the uniform distribution Q(�y) is not zero and |Ω| its area. With this
procedure, we multiply by 3 the number of training HOG samples.

Fig. 4 illustrates in 2D how rejection sampling can be used to
increase the size of a training set. Note that the red, green and blue
points illustrated classes of 3 different body poses. In this example,
our procedure has been executed on each class independantly.

Fig. 4. (Left) scatter plot of 2D feature vectors and (Right) Resulting
set of feature vectors after increasing the number of samples with
rejection sampling [12].
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Fig. 5. Sketch map of the lying-pose detection process.

3.4. Training Step 4 : Multi-SVM Training
The last step is to train K SVM classifiers, one for each body pose
recovered at step 2. The negative examples used for training are
made of non-human images. We use the libsvm toolbox to train each
SVM model. In order to keep the processing time low, the linear
kernel is used.

3.5. Lying-pose Detection
Like most human-shape detection methods, our detection method
scans the images with a rectangle window. At each position, a D-
dimensional HOG feature vector is extracted (as in training step 3)
and fed to all K-SVM classifiers. In order to make the method rota-
tion and scale invariant, this procedure is repeated at different scale
and different orientation as shown in Fig. 5. The rotation interval is
set to 20 degrees, the initial scale is set to 0.7, the final scale is set
to 1.1, and we enlarge the detected images with a scale step of 1.05.
The total number of scales is thus log(1.1/0.7)/ log(1.05) = 10.

When a HOG feature fector is fed to an SVM classifier, if the
output is greater than a threshold T (0.5 in our case), then the de-
tection result is recorded in a 5-D vector : (x, y, S, θ, score) where
(x, y) is the center of the current window, (S, θ) the scale and rota-
tion angle and score is the SVM output.

Typically, each body lying on the ground generates a series of
detection which form a blob in the (x, y, S, θ) space. Once scanning
is over, we recover the detected blobs with a mean-shift procedure
similar to the one in [24]. To do so, the detected results are normal-
ized in the same scale, namely (x/S, y/S, θ) and mean-shift is used
to find modes. For each mode, we retain the position and orientation
with maximum score with a non-maximum suppresson (NMS) pro-
cedure. Since the scale of original image is 1.0, the normalized posi-
tion corresponds to the center of the detected window in the original
image.
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4. EXPERIMENTS RESULTS
4.1. Dataset

Our lying pose dataset includes indoor and outdoor images. These
images were taken inside and outside various buildings, on parking
lots, on a beach and in various grassland areas. The cameras were
positioned at a height of 2 to 20 meters with different viewing angles
and orientation. 30 volunteers participated in this experiment. The
dataset contains a total of 1173 images with 0 to 7 persons per image,
for a total of 3240 human bodies. In order to gauge performances,
we divided the dataset in a training and a testing dataset. As shown
in Table 1, the training dataset contains 812 images, 2518 human
bodies and 890 negative examples (images void of a human body)
while the testing dataset contains 361 images, 722 human bodies and
1293 negative examples.

Table 1. Information on our lying pose dataset.
Training set Testing set

Positive Negative Positive Negative
Images 812 890 361 1293

Human bodies 2518 - 722 -

4.2. Metrics and Methods
We compared different versions of our method to the HOG-SVM
method by Dalal and Triggs [15], the most widely implemented
method for human shape detection. Our method is unique on two
aspects : it has 2 dataset expansion procedures (geometric expan-
sion and rejection sampling) and its uses K SVM classifiers, one
for each body pose. We thus evaluate the impact of these proce-
dures on the results. We tested the use of 1 SVM classifier versus
K-SVM classifiers and the use of the original data only (read Orig in
the result figures) versus the use of geometric expansion (read Orig
+ GE) and the use of geometric expansion plus rejection sampling
(read Orig+GE+RS). Note that our method corresponds to K-SVM
with Orig+GE+RS while 1 SVM with Orig corresponds to Dalal and
Triggs’ method [15] with a rotation in the search space (e.g. Fig. 5).

As in [8], we compared the methods by putting their miss rate
against their False positive per window (FPPW) rate in a log-log plot.
We also do it for the False positive per image (FPPI) rate. These
curves are obtained by varying the detection confidence threshold.
FPPW considers the number of true positives against the false posi-
tives obtained on images void of human shapes (that is why the test-
ing dataset of Table 1 has negative images). Note that FPPW does
not need to perform NMS or other postprocessing. As for FPPI, it
considers the total number of detected bounding boxes and compare
it with the ground truth bounding boxes. In this case, two bounding
boxes match if their overlap exceeds 0.5. Please see [8] for more
details.

4.3. Detection Results
Plots in Fig. 6 show that our method (K-SVM Orig+GE+RS) outper-
forms every other method. For a FPPW rate of 10−4, our method has
a miss rate of 17.32% compared to 44% for Dalal and Triggs (SVM
Orig). These curves also show that both the use of K-SVM classi-
fiers (instead of one) and our training dataset expansion procedures
improve results significantly.

For a FPPW of 10−4, the miss rate of a single SVM method
using Orig+GE+RS is of 31%, K-SVM with Orig+GE (so no RS) is
21%, and K-SVM Orig (no GE, no RS) is 25.5%. This shows that
both lying pose clustering for K-SVM training, rejection sampling
and geometric expansion are effective techniques to improve results.
So, according to our experimental validation, our proposed method,
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Fig. 6. The performance testing curve. The first column denote
False Positive Per Window (FPPW) performance curve. The second
column denote False Positive Per Image (FPPI) performance curve.
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Fig. 7. Blue boxes indicate ground truth, green boxes indicate detec-
tion result with our method, and red boxes indicate detection result
with Dalal and Triggs’ method. Second row shows false positives.

especially the geometric expansion and the lying pose clustering,
help improve the performance of our detector. When using the FPPI
measurement, as shown in the right hand side of Fig. 6, the miss rate
of K-SVM Orig+GE+RS is two time lower than that of SVM Orig
for an FPPI of 10−1.

Fig.7 shows detection results. The blue bounding boxes indicate
ground truth, the green ones is for our method and the red ones is for
Dalal and Triggs (1 SVM + Orig). As one can see, our method is sig-
nificantly more accurate than the one by Dalal and Triggs. The sec-
ond row shows example of false detections generated by our method.

Our method takes on average 3 minutes to process a 783x583
image on a personal computer. Note that processing time could be
further reduced by using a GPU and various speed-up strategies as
in [25]. Let us also mention that method by Yang and Ramanan [11]
(with the author’s code) take more than 15 minutes per image which
prevented us from processing the entire dataset. Early results re-
vealed that their method is 30% less accurate than ours.

5. CONCLUSION
We proposed a method for lying pose detection. Since it is chal-
lenging to generate a dataset that includes a large number of body
configurations, we propose a method that automatically increases the
size of a small training dataset. Our method performs a geometric
expansion and then uses rejection sampling to increase the number
of HOG feature vectors. Also, in order to account for various body
poses, we use K SVM classifiers (instead of one as is usually the
case) one for each body pose. Results obtained on 361 images show
that the expansion procedure as well as the K-SVM classifiers im-
prove results and outperform method by Dalal and Triggs [15] .
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