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ABSTRACT

Recently, a method of finding the spectral samples of non-periodic-
finite-rate-of-innovation (NP-FRI) signals using a sum-of-sincs
(SoS) sampling kernel was proposed in the literature. In the SoS
approach, the kernel is repeated at a rate dependent on the delays
of the FRI signal. The number of repetitions depends on both the
duration and the delays of pulses constituting the FRI signal. In
this paper, we show that the kernel repetition can be avoided and
perfect reconstruction can be obtained by working with the SoS ker-
nel directly provided that certain sampling criteria are satisfied. We
place a lower bound on the sampling rate to ensure that exact signal
reconstruction is achieved using filtered samples. To suppress the
effect of noise, we use Cadzow denoising technique. Reconstruction
is achieved using the annihilating filter method. We report results
on data simulated using Field II software as well as real cardiac
ultrasound data. The experimental results show that, with nearly
10 times less data than that required by the standard technique, the
proposed method gives a comparable quality of reconstruction. The
reconstruction accuracy can be controlled by choosing the model
order of the NP-FRI signal appropriately.

Index Terms— Finite rate of innovation, ultrasound imaging,
annihilating filter, Cadzow denoising, sum-of-sincs kernel.

1. INTRODUCTION

Recently, Vetterli et al. [1] proposed a sampling and reconstruction
methodology for the class of finite-rate-of-innovation (FRI) signals,
which may not be bandlimited nor lie in a shift-invariant space, but
specified by a finite number of free parameters per unit interval. For
example, consider

x(t) =
L∑
`=1

a` g(t− t`), (1)

which is an example of a non-periodic FRI (NP-FRI) signal, where
g(t) is a known signal and the amplitudes and delays {a`, t`}L`=1

are unknown free parameters. The FRI signal model is applicable
to many real-world signals such as those encountered in RADAR
[2], ultrasound [3], frequency-domain optical-coherence tomogra-
phy [4], etc. In this paper, we are specifically interested in ultrasound
image reconstruction using the FRI signal modeling approach. In
ultrasound imaging, a high-frequency (greater than 20 kHz) sound
wave pulse emitted by an ultrasound transducer is used to probe a
specimen (such as subcutaneous body structures). The pulse gets re-
flected from the specimen due to change in acoustic impedance. The

x(t) h(t)
y(t)

y(nT )

T

Fig. 1. Generic sampling setup.

reflected pulses are collected by the receiver. Tur et al. [3] showed
that the ultrasound signal can be modeled as an NP-FRI signal as
shown in (1), where g(t) is the transmitted pulse and x(t) is the re-
ceived signal, L represents the number of distinct layers of the spec-
imen assuming a piecewise-constant acoustic impedance, {a`}L`=1

denote the acoustic reflectivity of each layer, and {t`}L`=1 denote the
round-path time delay of the transmitted pulse from each layer and is
proportional to the geometric distance of the corresponding layer of
specimen from a reference plane. We assume that the delays {t`}L`=1

are ordered, that is, t1 < t2 < · · · < tL−1 < tL.
In Figure 1, we show a generic sampling setup with h(t) as

the sampling kernel. The goal of FRI sampling and reconstruc-
tion method is to design the sampling kernel h(t) such that, with
a suitable sampling interval T , one should be able to estimate the
unknown parameters {a`, t`}L`=1 from the samples y(nT ).

1.1. Related work

Vetterli et al. [1] considered sampling and reconstruction of FRI
signals such as stream of Dirac impulses, nonuniform splines, dif-
ferential Dirac impulses and piecewise-polynomial signals. For
these classes, they proposed the use of sinc and Gaussian sampling
kernels, and showed that the amplitudes and delays can be estimated
from a finite number of samples by employing annihilating filter.
Dragotti et al. [5] extended the class of sampling kernels to include
polynomial-reproducing kernels, exponential-reproducing kernels,
and kernels with rational transfer functions. Tur et al. [3] proposed
a sum-of-sincs (SoS) sampling kernel and showed applications to
ultrasound imaging. The SoS kernel has the advantage that it can be
applied to a generic class of pulses g(t) in (1). Sun [6] proposed an
average sampling method for FRI signals instead of instantaneously
sampling and showed that efficient reconstruction is feasible using
average sampling. The performance of Sun’s method in presence of
noise is reported by Bi et al. [7]. Sampling and reconstruction of
piecewise sinusoids and a combination of piecewise sinusoids and
polynomials is shown in [8]. Seelamantula and Unser [9] proposed
a multichannel sampling method for FRI signals, using a physically
realizable sampling kernel based on a resistor-capacitor circuit. The
reconstruction method does not require the use of the annihilating
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filter. Some alternative multichannel sampling approaches have
been proposed by Gedalyahu et al. [10], Kusuma and Goyal [11],
Olkkonen and Olkkonen [12], and Asl et al. [13]. Uriguen et
al. [14] proposed the use of arbitrary sampling kernels for FRI sig-
nals, whereas Matusiak and Eldar [15] addressed the sampling and
reconstruction of FRI signal with unknown pulse shapes. Multi-
dimensional extensions of the FRI signal sampling were reported
in [16–20].

1.2. This paper

In FRI literature, sampling and reconstruction of both periodic and
non-periodic FRI signals has been reported. With the sinc and Gaus-
sian sampling kernels [1], both periodic and non-periodic FRI sig-
nals can be reconstructed. However, these sampling kernels have
infinite impulse responses and are practically unrealizable. The SoS
kernel [3] proposed for periodic FRI signals has a finite duration.
To extend the sampling framework to NP-FRI signals, Tur et al. [3]
proposed repetition of the SoS kernel and the number of repetitions
depends on the width of the pulse g(t) and the maximum time-delay
tL in (1). Perfect repetition of h(t) may be difficult to realize in
practice. In this paper, we show that it is possible to sample and re-
construct NP-FRI signals using the SoS kernel directly without the
need for repetition. We also compute the minimum sampling rate
to enable accurate reconstruction. We also show applications of the
SoS kernel to simulated data obtained using Field II software, which
produces realistic ultrasound images, and real cardiac ultrasound im-
age data.

2. SAMPLING AND RECONSTRUCTION USING
SUM-OF-SINCS SAMPLING KERNEL

Given the FRI signal x(t) in (1), we assume that g(t) and L are
known and that g(t) is time-limited. The continuous-time Fourier
transform (CTFT) of x(t) is given by

X(ω) = G(ω)

L∑
`=1

a` e
−jωt` , (2)

where G(ω) is the CTFT of g(t). Consider the frequency-domain
function F (ω) = X(ω)

G(ω)
and samples of F (ω) at locations kω0 (as-

suming G(kω0) 6= 0), for integer k ∈ K. The set K is a set of
consecutive integers of cardinality greater than or equal to 2L. The
samples are given by,

F (kω0) =

L∑
`=1

a` e
−jkω0t` . (3)

If ω0 tL < 2π then from the samples of F (kω0), we can uniquely
determine the delays {t`}L`=1 by employing the annihilating filter
method [21]. Once the delays are estimated, the amplitudes {a`}L`=1

can be calculated using a least-squares (LS) approach. Hence, the
goal is to design a sampling kernel to obtain F (kω0) for k ∈ K
from x(t).

Since x(t) is not bandlimited, sampling x(t) directly at any sam-
pling rate will give rise to aliasing at all frequencies of X(ω). Due
to aliasing, one cannot measure samples ofX(ω) from discrete-time
Fourier transform (DTFT) of sampled signal y(nT ). If we employ
an ideal lowpass filter (anti-aliasing filter) before sampling and take
the samples at Nyquist rate, we can measure the samples of X(ω)
from DTFT of y(nT ) if kω0 lies in the passband of the lowpass

filter [1] for k ∈ K. However, an ideal lowpass filter is not realiz-
able, and hence, we need a practical alternative. Since the require-
ment is to estimate 2L samples of X(ω), it is desirable to design
a finite-duration sampling kernel and choose the sampling rate such
that there is no aliasing at frequencies kω0 for k ∈ K. In this case,
we show thatX(k ω0) can be computed directly from the frequency-
domain samples of y(nT ).

2.1. Estimating frequency samples of NP-FRI signal by SoS fil-
ter
Tur et al. [3] showed that by applying a sum-of-sincs (SoS) sampling
kernel, one can measure the Fourier series coefficients of periodic
FRI signals. The frequency response of the SoS kernel is

H(ω) =

L∑
p=−L

sinc
(
ω

ω0
− p
)
, (4)

and the corresponding time-domain representation is

h(t) = rect
(
t

T0

) L∑
p=−L

ejpω0t, (5)

where T0 = 2π
ω0

and rect
(
t
T0

)
= 1 for −T0

2
≤ t ≤ T0

2
, and zero

elsewhere. The SoS kernel in (5) nullifies the aliasing at frequencies
kω0 for k ∈ K (whereK = {−L,−L+1,−L+2, · · · , L−1, L})
provided that the sampling rate is chosen appropriately. From the
DTFT of samples y(nT ), one can measure X(kω0) for k ∈ K.

For NP-FRI signals in (1), Tur et al. [3] proposed a repetition of
SoS kernel in (5) as follows:

hr(t) =

M∑
q=−M

h(t− qTr), (6)

where M is measure of number of repetitions and depends on dura-
tion of the pulse g(t) and the maximum time delay tL in (1). The
period of repetition Tr depends on tL.

In this paper, we show that, one can estimate the frequency sam-
ples X(kω0) using the SoS kernel directly in (5) without requiring
to perform any repetitions of h(t).

The CTFT of filtered signal is Y (ω) = X(ω)H(ω) and the
Fourier transform of the sampled signal with sampling interval T is
given by,

Ys(ω) =
∑
m∈Z

L∑
p=−L

X(ω +mωs) sinc
(
ω +mωs

ω0
− p
)
, (7)

where ωs = 2π
T

. If we sample Ys(ω) at ω = k0ω0 and choose the
sampling frequency as ωs = N ω0, where k0 ∈ K and N ∈ Z+,

Ys(k0ω0) =
∑
m∈Z

L∑
p=−L

X(k0ω0 +mNω0) sinc (k0 +mN − p)

=

L∑
p=−L

X(k0ω0) sinc(k0 − p)

+
∑
m∈Z
m 6=0

L∑
p=−L

X(k0ω0 +mNω0) sinc (k0 +mN − p) . (8)
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For k0 ∈ K = {−L,−L+1, · · · , L−1, L}, the first summation
will have only one non-zero term at p = k0. We can write (8) as

Ys(k0ω0) = X(k0ω0)

+
∑
m∈Z
m 6=0

L∑
p=−L

X(k0ω0 +mNω0) sinc (k0 +mN − p) . (9)

The double summation term on the right hand side of (9) will be
zero if p − k0 6= mN for all m ∈ Z − {0} and k0 ∈ K. Since
the maximum value of |p − k0| is 2L, if we choose N such that
N > 2L, then the double summation term in (9) will be zero for all
m ∈ Z−{0}. Hence, with SoS sampling kernel in (4) and sampling
rate ωs ≥ (2L + 1)ω0, the aliasing effect at frequencies kω0 for
k ∈ K is nullified.

The next step is to estimate {X(kω0)}Lk=−L from samples
y(nT ). Since the FRI signal x(t) and sampling kernel h(t) are
of finite duration, the sampled signal y(t) has finite support and
hence there are finite number of non-zero samples y(nT ). Measur-
ing DTFT of the sequence y(nT ) at frequencies kω0 will give the
CTFT of x(t) at kω0.

2.2. Estimating delays and amplitudes of FRI signal

The frequency-domain samples of the FRI signal in (1) are given as

X(kω0) = G(kω0)

L∑
`=1

a` e
−jkω0t` . (10)

Since g(t) is a time-limited signal, it is not bandlimited, and we can
choose ω0 such that G(kω0) 6= 0 for k ∈ K and ω0tL < 2π. From
X(kω0) and G(kω0) we can find samples F (kω0) defined in (3).
These 2L+1 samples are of the form of a weighted sum of complex
exponentials. Estimating the frequencies of the complex exponen-
tials is a high-resolution spectral estimation problem [22] and can be
solved using Prony’s annihilating filter [21] method. Once the fre-
quencies (and hence, the pulse delays) are estimated, the amplitudes
are estimated by performing least-squares regression.

In the presence of measurement noise and modeling error, we
employ Cadzow’s [23] denoising method to boost the performance
of annihilating filter. In this scenario, we require more number of
samples (given by oversampling factor) than the rate of innovation
to estimate the delays and amplitudes.

3. EXPERIMENTAL RESULTS

We next validate the proposed method on simulated as well as ex-
perimental data.

3.1. Simulated NP-FRI signal

The FRI signal in this experiment is a stream of five Dirac impulses
with time delays and amplitudes selected randomly between (0, 1)
and (0, 3), respectively. One such realization of FRI signal is shown
in Figure 2(a). The SoS sampling kernel for L = 5 with ω0 = 2π

0.99
is plotted in Figure 2(b). The filtered output of the input FRI sig-
nal and its samples taken at a rate ωs = (2L + 1)ω0 are displayed
in Figure 2(c). From these samples, we compute DTFT at frequen-
cies {kω0}Lk=−L and estimate F (kω0). We employed annihilating
filter method on F (kω0) and estimated the delays {t`}L`=1 and sub-
sequently applied least-squares (LS) method to estimate the ampli-
tudes {a`}L`=1. The reconstructed signal is shown in Figure 2(d).
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Fig. 2. (a) Stream of five Dirac impulses, (b) SoS sampling kernel
with L = 5 and ω0 = 2π

0.99
, (c) Filtered output (in blue) and its

samples (in red), and (d) Original (in blue) and reconstructed (in
red) FRI signal.

We observe perfect reconstruction of the FRI signal up to numerical
precision.

3.2. Simulated ultrasound signals

This experiment is designed to verify the FRI model for ultrasound
signals and applicability of SoS sampling kernel for ultrasound im-
age reconstruction, where the number of samples is proportional to
the innovation rate of the signal. The ultrasound signal is gener-
ated using the open source simulation software Field II [24, 25]. An
imaging system comprising a linear array of 64 elements is used to
scan an artificial specimen. The specimen (cf. Figure 4(a)) consists
of randomly located pins (to mimic bones or high reflection regions
in the human body) and cysts (to mimic blood, water and such low
reflection regions). The excitation pulse is a truncated sinusoid of
frequency 4 MHz. The transducer sampling frequency is set at 40
MHz and the ultrasound beam is focussed to a depth of 10 cm. At
40 MHz sampling frequency, this results in 5194 samples per scan
line. A reasonable approximation to the reflected pulses was found
to be a truncated Gaussian with a standard deviation of 0.001. A
portion of the received signal of a typical scanline is shown in Fig-
ure 3(a). On applying the proposed sampling technique on the scan-
line in Figure 3(a), the reconstruction with L = 20 and L = 80
are shown in Figure 3(b) and Figure 3(c), respectively. Due to the
presence of measurement noise and model mismatch, we employ
Cadzow denoising method prior to annihilating filter with an over-
sampling factor of 4. The number of samples used in the recon-
struction of Figure 3(b) and Figure 3(c) are 160 (sampling rate 1.24
MHz) and 640 (sampling rate 4.93 MHz), respectively (measured
by downsampling the original signal). On applying the proposed
FRI sampling and reconstruction technique to all the scan lines and
delay-and-sum beamforming, the reconstructed ultrasound images
for simulated specimen are shown in Figure 4(b) and 4(c) for differ-
ent choices of L. We observe that, by sampling the ultrasound signal
with an SoS sampling kernel and applying the FRI method, the sig-
nal can be reconstructed accurately with a fewer number of samples
as compared with the conventional approach (cf. Figure 4(a)). The
reduction (compression ratio) in the number of samples used in re-
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Fig. 3. (a) Ultrasound signal generated using Field II; Ultrasound
signals reconstructed with model order (b) L = 20, and (c) L = 80.

(a) (b) (c)

Cyst

Pins

Fig. 4. Experiment results on ultrasound imaging on simulated spec-
imen: (a) Original specimen with cysts (highlighted by red boxes)
and pins (highlighted by blue boxes) constructed from 5194 samples
at a sampling rate of 40 MHz; reconstructed images with FRI sam-
pling and SoS kernel with (b)160 samples at a sampling rate 1.24
MHz and model order L = 20, and (c) 640 samples at a sampling
rate of 4.93 MHz and model order L = 80.

construction are of the order of 32 for L = 20 and 8 for L = 80,
respectively. As the model order increases, the reconstruction ac-
curacy improves as highlighted by the red and blue boxes shown in
Figure 4.

3.3. Real cardiac ultrasound signals

We next evaluate the performance of the proposed sampling and
reconstruction method on beamformed data obtained from a Gen-
eral Electric (GE) ultrasound scanner. The image obtained using the
standard reconstruction method is shown in Figure 5(a). The filter-
ing with SoS kernel and subsequent sampling is simulated digitally
starting with very finely sampled measurements obtained from the
GE scanner. The data set consists of 81 scanlines with 1850 sam-
ples per scanline. The proposed FRI sampling technique is applied
on each scanline of the beamformed data and the shape of the ba-

(a) (b)

(c)

Fig. 5. Validation on real cardiac data: (a) Standard reconstruc-
tion obtained with 1850 samples; ultrasound image obtained with
FRI sampling and SoS kernel corresponding to (b) 320 samples and
model order L = 40, and (c) 640 samples and model order L = 80 .

sic FRI pulse is chosen to be a truncated Gaussian with a standard
deviation 0.001. The reconstructed ultrasound images are shown in
Figure 5(b) and Figure 5(c) for L = 40 and L = 80, respectively.
An oversampling factor of 4 is chosen and Cadzow denoising is ap-
plied to overcome noise and model mismatch before employing the
annihilation filter method. The compression ratio in reconstructing
the ultrasound images by FRI method is 5.7 for L = 40 and 2.8 for
L = 80, respectively.

We observe that, the bright regions in Figure 5(a) (which sig-
nifies the chambers of the heart) are recovered in Figure 5(b), but
the grey regions corresponding to the smaller amplitude pulses are
missed in reconstruction. The areas of the grey regions captured in
Figure 5(c) increases when the model order is increased. Thus, the
model order is a convenient tool to control the amount of grey scat-
terers a medical practitioner would want to see. There are practicle
occasions when the medical practitioner is interested in observing
only the chambers of the heart and not the occluding grey regions.
Hence, the FRI sampling and reconstruction method offers an at-
tractive way to also selectively highlight regions of interest in the
reconstructed ultrasound image.

4. CONCLUSIONS

We proposed an aperiodic version of the SoS kernel for sampling
and reconstructing non-periodic FRI signals. The reconstruction is
achieved by canceling the aliasing at frequencies of interest by care-
fully choosing the sampling rate. The problem then boils down to
reconstructing the parameters of a sum of exponentials, which was
accomplished by using the annihilating filter method. In the pres-
ence of noise, Cadzow’s denoising technique was employed to boost
the signal-to-noise ratio. We validated the proposed methodology on
MATLAB simulated data, signals generated using Field II software,
as well as real cardiac ultrasound measurements. We showed that
the quality of reconstruction is comparable to the standard recon-
struction method, even though the number of samples actually used
in the reconstruction is about 10 times less. The model order further
helps control the quality of reconstruction.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20141731



5. REFERENCES

[1] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with
finite rate of innovation,” IEEE Trans. on Signal Process., vol.
50, no. 6, pp. 1417–1428, June 2002.

[2] O. Bar-Ilan and Y. C. Eldar, “Sub-Nyquist radar via doppler
focusing,” IEEE Trans. on Signal Process., vol. 62, no. 7, pp.
1796–1811, April 2014.

[3] R. Tur, Y. C. Eldar, and Z. Friedman, “Innovation rate sampling
of pulse streams with application to ultrasound imaging,” IEEE
Trans. on Signal Process., vol. 59, no. 4, pp. 1827–1842, April
2011.

[4] C. S. Seelamantula and S. Mulleti, “Super-resolution recon-
struction in frequency-domain optical-coherence tomography
using the finite-rate-of-innovation principle,” Manuscript un-
der revision IEEE Trans. on Signal Process., 2014.

[5] P. L. Dragotti, M. Vetterli, and T. Blu, “Sampling moments
and reconstructing signals of finite rate of innovation: Shannon
meets Strang-Fix,” IEEE Trans. on Signal Process., vol. 55, no.
5, pp. 1741–1757, May 2007.

[6] Q. Sun, “Nonuniform average sampling and reconstruction of
signals with finite rate of innovation,” SIAM J. Math. Anal.,
vol. 38, no. 5, pp. 1389–1422, 2006.

[7] N. Bi, M. Z. Nashed, and Q. Sun, “Reconstructing signals with
finite rate of innovation from noisy samples,” Acta Appl. Math.,
vol. 107, pp. 339–372, 2009.

[8] J. Berent, P. L. Dragotti, and T. Blu, “Sampling piecewise si-
nusoidal signals with finite rate of innovation methods,” IEEE
Trans. on Signal Process., vol. 58, no. 2, pp. 613–625, 2010.

[9] C. S. Seelamantula and M. Unser, “A generalized sam-
pling method for finite-rate-of-innovation-signal reconstruc-
tion,” IEEE Signal Process. Lett., pp. 813–816, 2008.

[10] K. Gedalyahu, R. Tur, and Y. C. Eldar, “Multichannel sampling
of pulse streams at the rate of innovation,” IEEE Trans. on
Signal Process., vol. 59, no. 4, pp. 1491–1504, April 2011.

[11] J. Kusuma and V. K. Goyal, “Multichannel sampling of para-
metric signals with a successive approximation property,” in
Proc. IEEE Int. Conf. Image Process., October 2006, pp. 1265
–1268.

[12] H. Olkkonen and J. T. Olkkonen, “Measurement and recon-
struction of impulse train by parallel exponential filters,” IEEE
Signal Process. Lett., vol. 15, pp. 241–244, 2008.

[13] H. A. Asl, P. L. Dragotti, and L. Baboulaz, “Multichannel
sampling of signals with finite rate of innovation,” IEEE Signal
Process. Lett., vol. 17, no. 8, pp. 762–765, August 2010.

[14] J. A. Uriguen, T. Blu, and P. L. Dragotti, “FRI sampling with
arbitrary kernels,” IEEE Trans.on Signal Process., vol. 61, no.
21, pp. 5310–5323, 2013.

[15] E. Matusiak and Y. C. Eldar, “Sub-Nyquist sampling of short
pulses,” IEEE Trans. on Signal Process., vol. 60, no. 3, pp.
1134–1148, 2012.
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de la dilatabilité de fluides élastiques et sur celles de la force
expansive de la vapeur de l’eau et de la vapeur de l’alcool, à
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