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ABSTRACT

Brain tumor classification is considered as one of the most
challenging tasks in medical imaging. In this paper, a novel
approach for multi-class brain tumor classification based on
sparse coding and dictionary learning is proposed. We pro-
pose an individual (per-class) dictionary learning and sparse
coding classification using K-SVD algorithm. This approach
combines topological and texture features to build and learn
a dictionary. Experimental results demonstrate that the sparse
coding based classification outperforms other state-of-the-art
methods.

Index Terms— Brain tumor classification, dictionary
learning, sparse coding, topological matrix, gray level co-
occurance matrix

1. INTRODUCTION

Early identification of brain tumors is important to treat the
tumors effectively. Multi-class brain tumor classification is
considered as one of the most important and challenging tasks
in medical imaging due to the difficulty to extract the relevant
information that can help to discriminate the tumor from the
normal brain tissue [2]. Brain tumor classification involves
two steps, feature extraction and classification. Feature ex-
traction is an essential step in the classification since the rel-
evant information from the original image needs to be cho-
sen in order to achieve high brain tumor classification accu-
racy [1]. In general, brain tumors have different shapes and
intensities from patient to patient [2], and sometimes, they
also have different gray scales yet the same intensities as brain
tissues [2]. Therefore, features related to the shape or inten-
sity create ambiguities during tumor classification [2].

Thiagarajan et al. [4] proposed a sparse coding for brain
tumor segmentation using intensity and location features.
Bauer et al. [5] developed a fully automatic algorithm for
brain tumor segmentation and classification using a support
vector machine (SVM) with a hierarchical conditional ran-
dom field. Han et al. [6] proposed an algorithm for gliobas-
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toma multiforme classification in the histological images
based on dictionary learning and sparse coding. The sparse
coding based classification was compared with the traditional
kernel methods of classification. They concluded that the
accuracy of kernel methods are better than sparse coding for
histological images. Selvaraj et al. [7] proposed an automatic
classification technique based on Least Squares SVM to iden-
tify normal and abnormal slices of brain MRI images. Moon
et al. [8] proposed an automatic brain tumor segmentation
based on statistical classification with a geometrical prior.
Cocosco et al. [9] proposed a fully automatic generation of
correct training samples for MRI tissue classification. Weiss
et al. [10] proposed an approach for multiple sclerosis lesion
segmentation using dictionary learning and sparse coding
using intensity features. In the previous papers, these ap-
proaches used either intensity-based or texture-based feature
extraction for brain tumor classification, however a brain tu-
mor may have the same intensity as normal brain tissue [11].
Furthermore, sparse representation has been shown to be an
effective method for brain tumor classification by represent-
ing the images as dictionaries consist of linear combination of
a few columns (atoms) of some redundant basis [16]. While
in the Linear-SVM, the data may not be linearly separable
in the original feature space and needs higher dimensional
space mapping to increase the classification accuracy which
is computationally expensive [6].

In contrast to previous papers, our contribution is a mod-
ified sparse coding and dictionary learning based multi-class
classification. We proposed to use the K-SVD method to up-
date both of the dictionary and sparse coding steps. Further-
more, due to the high degree of similarity in pixel intensities
between normal brain tissue and tumor, and the variability of
the tumor shape, location, and size, this variability justifies
the use of topological and texture features to learn the dictio-
nary. The topological feature gives information whether the
case is normal or abnormal based on the assumption that the
topology of normal brain is fixed. Therefore, the presence of
tumor in the brain will change the normal brain topology. In
addition, the texture features provide a good discrimination of
the brain tumor types. The main novelty in our algorithm is
the use of topology and texture features for learning, instead
of applying learning directly on pixel values.
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The rest of this paper is organized as follows: Section 2
explains the proposed method. Section 3 discusses the results
and Section 4 summarizes the paper.

2. METHOD

2.1. Feature Extraction

In this subsection, the feature extraction step is explained by
proposing a set of topological and texture features that give
relevant information about the tumor.

2.1.1. Topological Matrix (TM)

The proposed topological matrix is represented by a topolog-
ical graph relationship and it considers the main feature to
classify the normal and abnormal brain images by assuming
that the topology of the normal brain is fixed. The topological
graph is constructed from the input data to provide the feature
knowledge to the classifier. To compute TM , we consider
an image I as sets of clusters depending on the dissimilar-
ity between them I = Oi, Oi+1, ..., ON . These clusters are
connected with each other by a specific topological relation-
ship. The clusters in the topological graph of the image I
are computed using Otsu’s method [12] and the topological
relationship of these clusters are computed using the method
proposed by Al-Shaikhli et al. [13]. Let O◦ be the interior
of the cluster, ∂O be the boundary of the cluster, and χOi

is the membership function of each cluster. The topologi-
cal relationship between the clusters is calculated in terms of
probability of intersections of these clusters [13]:

VTM (Oi, Oi+1) = (m11,m12,m13, . . . ,m33)
T (1)

VTM in Eq. (1) is a vector of zeros and ones and it is the
sum of all individual VTM that are computed for each region
(VTM =

∑N
i=1 VTMi

). The elements (that have ones values)
represent the topological relationship of each region in the
image. In our calculation, we consider only four elements
(m11,m12,m21, and m22) and the rest are set as ones:

m11 = 0,m12 = 0,m21 = 0,m22 = 0 if RLdis(Oi, Oi+1) > 0

m11 = 0,m12 = 0,m21 = 0,m22 = 1 if RLcon(Oi, Oi+1) > 0

m11 = 0,m12 = 0,m21 = 1,m22 = 0 if RLin(Oi, Oi+1) > 0

m11 = 1,m12 = 1,m21 = 1,m22 = 1 if RLov(Oi, Oi+1) > 0

(2)
where RLdis, RLcon, RLin, and RLov are disjoint, contact,
inside and overlap region relationship respectively as follows:

RLdis(Oi, Oi+1) = 1−max
b
{|χOi

(b) + χOi+1
(b)− 1|}

(3)

RLin(Oi, Oi+1) = min(1,min
b

(1 + χO◦
i+1

(b)− χOi
(b)))

(4)

Fig. 1. Example of normal and abnormal brain MRI images
with their topological graph and basis vectors of the topolog-
ical feature. The element m21 = 5 in the normal case while
m21 = 6 in the abnormal case, this indicates that there is a
tumor in the brain. The violet rectangle represents the overall
topological graph of the normal case, the black rectangle rep-
resents the topological graph of the example images, and the
green rectangle represents the abnormal connectivity of WM.

RLcon(Oi, Oi+1) =

min{(1−max
b

(|χO◦
i
(b) + χO◦

i+1
(b)− 1|)),

max
b

(min(χ∂Oi
(b), χ∂Oi+1

(b)))} (5)

RLov(Oi, Oi+1) =

min{max
b

(min(χO◦
i+1

(b), χO◦
i
(b))),

max
b

(min(χO◦
i
(b), χ∂Oi+1

(b))),

max
b

(min(χO◦
i+1

(b), χ∂Oi
(b))),

max
b

(min(χ∂Oi
(b), χ∂Oi+1

(b)))} (6)

where b is a pixel in I . Table 1 and Fig. (1) illustrate the
proposed topological properties for both normal and abnor-
mal cases of the brain. In Table 1, the connected components
represent the total relationship of each region. The number of
cavities in each region indicates the number of regions inside
it. In Fig. (1), the label (8) represents the abnormal connec-
tivity of the white matter (presence of a tumor). Therefore the
topological relationship of the white matter is changed. Ac-
cording to Eq. (1) and Eq. (2) this change is illustrated in el-
ement m21 in TM because the tumor is inside WM, for more
details see [13]. This could be also seen in the basis vector
of the topological feature of normal and abnormal brain MRI
images.

2.1.2. Gray Level Co-occurance Matrix (GLM)

GLM is an important method for textural feature extraction
proposed by Haralick et al [14]. Four texture features (con-
trast, correlation, energy, and inverse difference moment) are
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Table 1. Topological properties for the normal (abnormal)
cases.

Tissue
label

Tissue type
# of

connected
components

Internal
cavity Handles

1 Sulcal CSF 3 (3) 1 (1) 1 (1)
2 Cortical gray matter (GM) 2 (>2) 1 (>1) 1 (>1)
3 White matter (WM) 3 (>3) 2 (>2) 2 (>2)
4 Subcortical gray matter 2 (>2) 0 (>0) 0 (>0)
5 Ventricles 3 (>3) 0 (0) 0 (0)
6 Cerebellum 2 (>2) 0 (>0) 0 (>0)
7 Brain stem 1 (>1) 0 (>0) 0 (>0)

considered for brain tumor classification. These features have
been calculated for four different offsets (0◦, 45◦, 90◦, and
135◦).

2.2. Dictionary Learning

In this subsection, the dictionary learning step in our algo-
rithm using a K-SVD method will be presented to learn and
update the dictionary. Let c = 1, ..., 4 is the number of the
class,Nc are the training images of each class. Dc are the dic-
tionaries of the corresponding training images of each class,
and N is the sum of the training images of all four classes as
explained in Fig. (2) which illustrates the proposed algorithm.

Let Dc be a dictionary n × Kc matrix Dc = (d1, d2, ...,
dKc

), which consists of Kc atoms (columns), {di ∈ Rn :
i = 1, 2, ...,Kc} and each atom represents the key features
extracted from Yc, where (Kc � Nc) Yc = (y1, y2, ..., yNc

)
is a n × Nc matrix which consists of feature vectors {yi ∈
Rn : i = 1, 2, ..., Nc} of Nc data samples (feature vec-
tors) with dimension n. To compute the sparse representa-
tion Ac = (a1, a2, ..., aNc

) ∈ RKc×Nc , s.t. yi = Dcai and
‖ai‖0 << Kc, i = 1, ..., Nc, the dictionary Dc by feature
samples Yc needs to be trained. In such a way that each fea-
ture vector in Yc is represented by linear combination of a few
atoms in the dictionary according to the non-zero elements in
Ac as illustrated in the generative learning step in Fig. (2).

Our goal is to update the dictionary and the sparse repre-
sentation Ac by minimizing the following equation using the
K-SVD method [15]:

arg min
Dc,Ac

‖Yc −DcAc‖2F s.t. ∀1 ≤ i ≤ Nc, ‖ai‖0 � Kc

(7)

To get an update of the dictionaryDc and the sparse represen-
tationAc, we assume that the condition in Eq. (7) is aKc×Nc

matrix multiplied by Ac as a dot product of multiplication:

Pc =

{
Pc(i, j) = 1 for Ac(i, j) = 0
Pc(i, j) = 0 otherwise

(8)

Now, we can rewrite Eq. (7) as follows:

{D̂c, Âc} = arg min
Dc,Ac

‖Yc −DcAc‖2F s.t. Pc ◦Ac = 0

(9)

The dot product (Pc ◦Ac = 0) achieves all zeros in Ac with-
out change. Equation (9) represents the update stage of the
dictionary and we solve it by considering DcAc as a sum of
rank-1 outer products:

{D̂c, Âc} = arg min
Dc,Ac

‖Yc −
K∑
i=1

dia
T
i ‖2F

s.t. ∀1 ≤ i ≤ Kc, pi ◦ ai = 0 (10)

To optimize the above equation, we use a block coordinate
descent method. By multiplying the (n × Nc) rank-1 matrix
(1n ·pTj ) with Eq. (10), we compute the error matrices. There-
fore, all columns of the samples that do not use jth atom are
removed.

Ei = (Y −
∑
i 6=j

dia
T
i ) ◦ (1n · pTj ) (11)

where Ei are the overall representation error matrix. In
Eq. (11), the rank-1 matrix represents the n times replication
of the row pTj which forces the zeros in the right location in
ai. For each category c we have a learned dictionary Dc that
contains atoms and each atom represents the key features of
the samples in each category {Yc ∈ Rn×Nc : c = 1, . . . , 4}
and the total number of feature samples is represented by
(Y = (Y1, Y2, . . . , Y4)) in the dictionary:

D = (D1, D2, . . . , D4) ∈ Rn×N , N =
∑
c

Nc (12)

Fig. 2. Schematic illustration of the proposed algorithm. In
the training part, (c1) normal, (c2) glioma, (c3) glioplastoma,
(c4) carcinoma and the feature vector represents the topolog-
ical and texture features of each case. Generative learning
illustrates the dictionary learning step. The testing part illus-
trates the computing of the sparse representation of the test
images.

2.3. Classification

The classification step of the proposed algorithm is based on
sparse representation. In Sec. 2.2, the dictionary learning step
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of each category was explained. To classify the testing data,
the algorithm tries to find a match between the testing data
Y and the dictionary of specific category Dc. This can be
achieved by computing the similarity of the testing data with
contents (key features) of the dictionary Dc. Therefore, the
sparse representation of the testing data is computed using
the individual dictionaries of the all categories (as illustrated
in the testing part of Fig. (2)) and then Y is classified as a cth

category when appear that Y is more sparse with Dcth :

‖Y −DcAc‖2F ≤ ε , ‖Ac‖0 = min{‖Ab‖0 : b = 1, . . . , 4}
(13)

3. EXPERIMENTAL RESULTS AND DISCUSSION

To explore the advantages of the proposed algorithm com-
pared to the other methods, several experiments have been
conducted on diverse medical images. In this paper three
medical datasets are used, namely, brain web for simulated
brain database [17], brain tumor segmentation database [18,
19], and whole brain atlas [20], and other medical images
with brain tumor from the internet. From all databases, 4
classes of images have been collected; 50 normal brain cases
(class 1), 50 cases with brain glioma (class 2), 50 cases
with brain glioplastoma (class 3), and 50 cases with brain
metastatic carcinoma (class 4). Each case has a set of 10
images which make the total number of images for the train-
ing set of 4 classes 2000 images (50 cases × 4 classes × 10
images of each class = 2000 images). For testing, a 10-fold
cross validation is used to evaluate the performance of the
classification. Figure (2) shows examples of images from
these databases.

Each patch in the dictionary is represented using a feature
vector, including topological and textural information. The
images are classified as normal case or abnormal case accord-
ing to their topological properties as explained in Table 1.
Then the images are classified furthermore according to the
texture features of the abnormality if they exist. In the classi-
fication step, two types of classifiers are used (sparse coding
classifier and Linear-SVM classifier). Sparse coding classi-
fier performs higher classification accuracy than Linear-SVM
classifier (93.7 % versus 88.75 %). Furthermore, the pro-
posed algorithm (using sparse coding classifier) is compared
with other classification methods used in [6, 10] after adapting
these methods for multi-class classification. In the proposed
algorithm, the classification step is obtained by finding the
match between the sparse representation of the testing data
with the specific dictionary. The performance for multi-class
classification (Recall, Precision, Average Accuracy (AA)) are
computed by computing the True Positive (TP), True Nega-
tive (TN), False Positive (FP), False Negative (FN) using the
algorithm [21]:

Precision =

∑C
c=1

TPc

TPc+FNc

C
, Recall =

∑C
c=1

FPc

TPc+FNc

C

Fig. 3. Confusion matrix for all datasets. The average accu-
racy is 93.75%. Most confusions occur in brain carcinoma.
(c1) Normal, (c2) Glioma, (c3) Glioplastoma, (c4) carcinoma.

Table 2. Classification Evaluation.
Classifier Type Recall Precision AA

Sparse Coding (Proposed) 92.5% 94.87% 93.75%
Han et al. [6] 92.5% 90.24% 91.25%

Weiss et al. [10] 90.0% 92.31% 90.0%

AA =

∑C
c=1

TPc+TNc

TPc+TNc+FPc+FNc

C

Table 2 illustrates the classification performance of the
proposed algorithm using sparse coding classifier better than
other classification methods proposed in the literature [6, 10].
From the confusion matrix in Fig. (3), it can be observed that
the class 1 (normal) is classified correctly with minimum be-
cause the topological feature gives accurate information of the
normal and abnormal cases. The errors occurred mainly with
the class 4 (carcinoma) with error 0.14 which is classified as
class 2 (glioma) and class 3 (glioplastoma) due the textural
similarity in T2 MRI images of these cases. Class 3 (glioplas-
toma) is classified as class 2 (glioma) with error 0.0565 and
class 2 (glioma) is classified as class 3 (glioplastoma) with er-
ror 0.0435. Totally, 6.25 % of the four classes are classified
incorrectly.

4. CONCLUSION

In this paper dictionary learning and sparse coding are pro-
posed for multi-class brain tumor classification. The dictio-
nary is constructed and learned from the topological and tex-
ture features of the trained data. Then the learned dictionary
is used to classify the testing data. Two types of classifiers
are used for classification namely sparse coding and linear-
SVM. The sparse coding classifier computes the matching
between the sparse representation of the testing data and the
corresponding dictionary. The results showed that the sparse
representation based classification achieves higher classifica-
tion accuracy than Linear-SVM based classification technique
(93.75 % versus 88.75 %). The proposed algorithm has also
been compared to other classification methods, demonstrating
the advantages of the method proposed in this paper.
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