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ABSTRACT 
1 

In this paper, we propose a new single image dehazing approach 

based on information fidelity and image entropy. The global 

atmospheric light is estimated by quad-tree subdivision using 

transformed hazy images. Then, transmission is estimated by an 

objective function which is comprised of information fidelity and 

image entropy at non-overlapped sub-block regions. This is further 

refined by a Weighted Least Squares (WLS) optimization 

procedure to alleviate block artifacts. We compared performance of 

the proposed method with conventional methods to validate its 

effectiveness in an experiment. 

 

Index Terms— Airlight, dehazing, image entropy, edge-

preserving smoothing, transmission 

 

1. INTRODUCTION 

 
Images of outdoor scenes are often degraded by turbid medium, 

such as dirt particles and water droplets, in the atmosphere. Light 

is scattered or attenuated as it travels through these particles, 

resulting less image radiance reaching the imaging sensor. Scene 

information is further corrupted by so called the “airlight” 

originated from ambient light reaching the sensor by the scattering 

medium [1]-[4]. It can be said that the image degradation due to 

airlight and the attenuated light from the scene is directly linked to 

the distance from the scene to the imaging sensor. Image 

degradation extends to scene color content since light attenuation 

through a turbid medium is not spectrally uniform.    

There have been a number of techniques developed for haze 

removal to enhance scene visibility and restore color content [5]-

[13]. Recently, there are single image haze removal methods due to 

the practical real-world applications [6, 7, 8, 9, 23]. Fattal et al. 

proposed a single image dehazing method using albedo of a scene 

[6]. Their method estimated the transmitted object radiance using 

statistical independence between shading and albedo. However, it 

requires adequate color information and its performance greatly 

depends on the statistical information of a hazy image. Tan et al. 

proposed a hazy image enhancement method using chromaticity 

[7]. However, this method can occasionally result oversaturated 

colors because maximizing contrast using the number of edges 

tends to overestimate the haze layer. K. He et al. restored a hazy 

image using the Dark Channel Prior (DCP) which is derived from 

statistics of haze-free images [8]. However, their method dose not 

sometimes remove a haze effectively since some images may not 
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coincide derived statistics. They also refined transmission with an 

alpha matting to reduce the block artifacts. However, their method 

requires heavy computational load. J. Kim et al. proposed a haze 

removal method based on contrast enhancement [9]. They 

estimated transmission by minimizing a cost function which 

consists of uniformness of the histogram and the standard 

deviation. However, their method sometimes results in color 

distortion or over-stretched artifacts if there are many truncation 

pixels when calculating the cost function. 

To remove haze effectively those artifacts in the conventional 

method, we present a single image dehazing method based on an 

objective function which consists of image entropy and 

information fidelity. This paper is organized as follows. In Section 

2, we describe the atmospheric scattering model. Section 3 

describes detailed description of the proposed method. Section 4 

provides a performance comparison with conventional methods. 

Finally, we deliver our conclusion in Section 5. 

 

2. HAZY IMAGE MODELING 

 
Generally, the exact nature of scattering is highly complex and 

depends on the types, size, orientation and distributions of particles 

constituting the media as well as wavelengths, polarization states 

and direction of the incident light [11]-[15]. 

The observed color of images captured under hazy condition 

can be modeled, based on the atmospheric optics [8, 9],  

 

            )),(1()()()( xAxxJxI rr                  (1) 

 
where, x is a spatial location in the image, I is the observed 

intensity, J is the scene radiance, A is the atmospheric light which 

 
               (a)                                (b)                              (c) 
Fig. 1. Atmospheric light estimation. (a) Hazy image. (b) 

Conventional method [9]. (c) Proposed method. The blocks filled 

with blue and red color are the finally selected region. 
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is assumed to be globally constant. r is the medium transmission 

describing the portion of the light that is not scattered and reaches 

the camera. From (1), the total irradiance is usually described by 

the sum of the direct attenuated irradiance J(x)r(x) and the airlight 

irradiance A(1 - r(x)). As the transmission r decreases, the airlight 

accumulates and becomes more intense in the hazy images. 

Essentially, the goal of single image haze removal is to recover J 

from (1) rewritten as 
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The dehazed image J can be restored from the hazy image by 

estimating the atmospheric light A and the transmission r. In the 

next section, we describe how to estimate the atmospheric light and 

the transmission. 

 

3. PROPOSED METHOD 
 

3.1. Atmospheric Light Estimation 

 
Hazy images can occasionally have un-balanced color due to the 

scattering effects. This condition may result color distortion in a 

dehazed image. Therefore, it is customary that a hazy image is 

processed by white balancing before estimating the atmospheric 

light. We opted for the shades-of-gray color constancy technique 

[22] due to its simplicity and effectiveness in hazy images [23]. 

After white balancing, we estimate the atmospheric light which 

exists in most haze-opaque regions. K. He et al. first pick the top 

0.1 percent brightest pixels in the dark channel and selects from 

them the highest intensity as A [8]. However, the dark channel can 

fail to select the most haze-opaque region by the influence of white 

object. J. Kim et al. estimate A from quad-tree subdivision by 

selecting the sub-block which has the largest average value among 

the four divided blocks from a gray-scaled hazy image repeatedly 

until pre-specified number of times [9]. Then, A is selected as an 

RGB-based color vector minimizing the Euclidean norm with (1, 1, 

1) in the finally selected block. However, this method may also fail 

to estimate A if an image contains bright regions as shown in Fig. 

1(b). To select A more reliably, we assume that atmospheric light 

is pervasive over a large portion of hazy image, and its intensity is 

highest in a local region. By assuming these two aspects of 

atmospheric light, we estimate A by quad-tree subdivision using a 

transformed image as follows. A gray scale image of L, which was 

obtained from a hazy color image, is subdivided into non- 

overlapping blocks of size M×M.  All pixel values in each of these 

blocks, defined as Lk
block, is then then replaced with their minimum 

value to minimize adverse effects due to bright values of a local 

object as follows: 
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The block size M of 30×30 was set empirically as a tradeoff 

between accuracy and reliability. Fig. 1(c) shows the transformed 

image using (3). Since the transformed image T has lower intensity 

values than original gray scale image L on average, the quad-tree 

subdivision approach can select the candidate region for estimating 

the atmospheric light more reliably in the proposed method. This is 

well illustrated with an example in Fig. 1(c). Note that the 

proposed method selects sky region as the final candidate region 

after 5 iterations without being distracted by white floors in bottom 

regions. Among pixels in the finally selected region, we can 

estimate the atmospheric light as the color vector of the p-th pixel 

which minimizes the Euclidean norm, ║ (rp, gp, bp) – (1, 1, 1) ║. 

By minimizing the Euclidean nom, we can estimate the 

atmospheric light more reliably. 

 

3.2. Transmission Estimation 
 

As written in (2), the dehazed image J depends on transmission r 

as well as the atmospheric light A. To estimate the transmission 

which allows the dehazed image to have good contrast while 

minimizing information loss, we propose the objective function 

which is comprised of two functions. The first one is the image 

entropy fentropy as a contrast measure. It has been proven to be a 

powerful tool for image processing and a statistical measure of 

randomness that can be used to characterize texture of an image 

[16, 20]. Note that the entropy of haze-free image is bigger than 

that of hazy image at same scene, since the haze-free image is 

 
               (a)                                (b)                              (c) 
Fig. 2. (a) Hazy image. (b) Dehazed result using estimated 

transmission without ffidelity. (c) Dehazed result using estimated 

transmission with ffidelity. 
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Fig. 3. (a) The graph of the objective function for finding the 

optimal transmission value. (b) The hazy image. (c) Estimated 

transmission from the objective function (r = 0.60). (d) Dehazed 

image using (c) which is the maximum value in blue-line. 
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distributed more randomly compared to hazy image. An image 

entropy can be expressed by the function of transmission r as 

follows:  
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where N is the number of pixels in the image, hi(r) is the number of 

pixels that have intensity i in the gray-scaled image of J calculated 

from (2), when the transmission is set to r. However, the dehazed 

image may take values smaller than 0 or larger than 255 when (I(x) 

– A) term in (2) is divided by small value of r. In such a case, those 

underflow and overflow values are required to be truncated. 

However, an excessive number of truncations leads to 

misestimation of transmission and results in color distortion in the 

dehazed image as shown in red circles of Fig. 2(b). Therefore, we 

define the second function ffidelity as an information fidelity measure 

to provide more faithful dehazing results and reduce the overflow 

and underflow when we estimate the transmission. ffidelity(r) is 

defined as follows: 
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where, sc(r) expresses the ratio of pixels between 0 and 255 at each 

color channel of the dehazed image J when the transmission is set 

to r. That is, ffidelity(r) is the minimum ratio of the number of pixels 

which are not truncated among the RGB color channels in J. Note 

that as the number of truncated pixels becomes fewer, ffidelity(r) 

becomes larger. In other words, we can restrict the amount of 

truncation effectively by maximizing the proposed information 

fidelity measure. Consequently, the proposed objective function is 

defined as a product of two measures: 

 

),()()( rfrfrf fidelityentropyobjective                  (7) 

 

By maximizing the objective function in (7), we can estimate the 

transmission which provides good contrast and faithful dehazing 

results without distortions as shown in Fig. 2(c). In Fig. 3(a), red 

line and green line show the variation of entropy measure in (4) 

and information fidelity measure in (5), respectively, according to r 

at a homogeneous haze condition as shown in Fig. 3(b). Blue line 

in Fig. 3(a) shows the variation of fobjective(r). In this example, when 

r becomes smaller than about 0.6, fobjective(r) becomes smaller due 

to the truncation loss. That is, as the truncated values are increased, 

fentropy and ffidelity are decreased since the more pixels are outside the 

range and concentrated to 0 and 255. Note that when r exceeds 

about 0.6, the ffidelity approaches to 1, which means that no pixels 

are truncated. However, fentropy starts to decrease when r approaches 

to 1. This is because the degree of dehazing operation gets smaller 

in (2), i.e., J(x) ≈  I(x). Remember that the entropy of hazy image 

is smaller than that of haze-free image at same scene. Thus the 

resultant fobjective(r) has a concave shape as shown in Fig. 3(a) and 

the optimal transmission can be determined by maximizing fobjective 

roughly between 0.5 and 0.7 in this example. Therefore, we 

determine the transmission r to maximize the objective function 

fobjective(r). 

However, since the values of the transmission in outdoor hazy 

image is non-homogeneous and space-varying [6]-[9], local 

optimal transmission is estimated at each of the non-overlapped 

sub-block regions as follows: 
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where rk
block is the k-th sub-block which is divided by pre-specified 

block size from a hazy image. If the block size is too big or too 

small, estimated transmission is likely to be inaccurate. More 

specifically, if the block size is too big, it may encompass regions 

supposed to have different transmission values. On the contrary, if 

the block is too small, estimated transmission may not be exact due 

to the insufficient number of pixels. We set the block size to 30×30 

experimentally in this paper. The minimum transmission value is 

set by 0.01 to prevent division by zero in (2). Fig. 4(c) shows the 

estimated transmission values for each blocks in (8). 

 

3.3. Transmission Refinement 
 

Since the transmission from (8) is estimated in non-overlapping 

manner for each sub-block, block artifacts can occur at the dehazed 

(a)

(b)

(c)

(d)

(e)

(f )

 
Fig. 4. Dehazing procedure of the proposed method. (a) Hazy image. (b) White balance image (The red rectangle is the final selected 

block by the proposed method). (c) Estimated optimal transmission from (8). (d) Dehazed image using (c). (e) Refined transmission. (f) 

Dehazed image using (e). 
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image as depicted in Fig. 4(d). To alleviate those artifacts, we 

employ our previous work in [10] which refines the transmission 

by WLS optimization solution [17]. We set the smoothing 

parameter λ to 0.8 and sensitivity parameter α to 1.2, respectively. 

Fig. 4(e) shows the refined transmission by WLS optimization 

solution. 

 

4. EXPERIMENTAL RESULTS 

 
To validate effectiveness of the proposed method, we compared 

our method with conventional methods [6, 8, 9, 19]. Fig. 5 shows 

the comparison of the proposed method with Kim’s method [9] 

and He’s method [8]. As apparent in Fig. 5(a) and (b), the 

proposed method estimates the atmospheric light more reliably 

compared to the conventional methods [8, 9]. Consequently, the 

proposed method provides more visually pleasing results compared 

to the conventional methods as shown in Fig. 5(e) and (f). 

We also compared performance of the proposed method with 

other conventional methods whose results were uploaded on 

webpages [25] in terms of Colorfulness [24], Global Contrast 

Factor (GCF) [21] measure and visible edge gradient method [18]. 

The visible edge gradient [18] which consists of three indicators e, 

r, σ is a method for measuring visibility using the input hazy image 

and the restored image. e is the rate of edges newly visible after 

restoration, and r is the mean ratio of the gradient norms at visible 

edges. σ is the percentage of pixels that becomes completely black 

or completely white after restoration. We should inform that 

dehazed image has better quality as σ becomes smaller and the 

other indicators become bigger. The quantitative results are shown 

in Table 1, and Table 2. Fattal’s method represents good 

performance in close-range regions. However, their method dose 

not remove haze effectively in far-range regions. While Kopf’s 

method shows good scores in GCF and r, it is less effective in 

terms of Colorfulness and σ. While Kopf’s method and He’s 

method show limited performance since they have good scores 

only in GCF and σ. The proposed method shows better 

performance qualitatively as well as quantitatively overall. 

 

Table 1. Quantitative measurements of the 1st row in Fig. 6. 

 
Table 2. Quantitative measurements of the 2nd row in Fig. 6. 

 

5. CONCLUSIONS 

 
In this paper, we proposed an effective single image dehazing 

algorithm. The proposed method estimates the atmospheric light by 

quad-tree subdivision using transformed image after white balance 

processing. Then, the optimal transmission is estimated by 

maximizing the objective function that consists of image entropy 

and information fidelity. Finally, the transmission is refined by 

WLS optimization procedure. From the limited set of experiments, 

it successfully enhanced image contrast while retaining color 

fidelity. 

Index Fattal Kopf He Proposed 

e [18] 0.1059 0.0168 0.0234 0.3213 

r [18] 1.5335 1.6136 1.6286 2.2744 

σ [18] 1.6988 1.3598 0.0136 0.0672 

Colorfulness 652.45 455.84 963.62 1127.42 

GCF 7.87 8.53 8.63 8.49 

Index Fattal Kopf He Proposed 

e [18] 0.0538 0.03607 0.04821 0.0849 

r [18] 1.2875 1.4091 1.3979 1.4114 

σ [18] 9.4053 0.2993 0.0056 0.0574 

Colorfulness 387.01 390.67 509.90 706.09 

GCF 5.89 6.65 6.72 6.80 

(a)

(b)

(c)

(d)

(e)

(f )

 
Fig. 5. The comparison of the proposed method with conventional methods. (a) Hazy image (The red rectangle is the final selected 

block to determine the atmospheric light by conventional work [9]). (b) Hazy image (The red area in upper side of airplane “Lion” 

represents the top 0.1% of the brightest pixels in dark channel, in which the biggest pixel value is selected as the atmospheric light [8]). 

(c) Dehazed image by Kim’s work [9]. (d) Dehazed image by He’s work [8]. (e), (f) Dehazed images by proposed method. The blue 

rectangles in (a) and (b) are finally selected block to determine the atmospheric light by proposed method. 

 

 
           (a)                (b)               (c)                (d)              (e) 
Fig. 6. The comparison with other methods. (a) Hazy image.       

(b) Fattal’s work [6]. (c) Kopf’s work [19]. (d) He’s work [8].                 

(e) Proposed method. 
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