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ABSTRACT

This paper presents an inpainting method based on 2D semi-
supervised canonical correlation analysis (2D semi-CCA) including
new priority estimation. The proposed method estimates relation-
ship, i.e., the optimal correlation, between missing area and its
neighboring area from known parts within the target image by using
2D CCA. In this approach, we newly introduce a semi-supervised
scheme into the 2D CCA for deriving the 2D semi-CCA which
corresponds to a hybrid version of 2D CCA and 2D principle com-
ponent analysis (2D PCA). This enables successful relationship
estimation even if sufficient number of training pairs cannot be pro-
vided. Then, by using the obtained relationship, accurate estimation
of the missing intensities can be realized. Furthermore, in the pro-
posed method, errors caused in the new variate space obtained by
the 2D semi-CCA are effectively used for deriving patch priority
determining inpainting order of missing areas. Experimental results
show our inpainting method can outperform previously reported
methods.

Index Terms— Inpainting, canonical correlation analysis, semi-
supervised scheme, texture reconstruction.

1. INTRODUCTION

Inpainting has intensively been studied in the field of image pro-
cessing since it can afford a number of fundamental applications
[1]–[19]. Most of the methods are broadly classified into several
categories: structure reconstruction methods [1]–[4] including par-
tial differential equation (PDE)-based approaches, exemplar-based
methods [6]–[10], multivariate analysis-based reconstruction meth-
ods [11]–[19], etc. Generally, structure reconstruction methods
enable successful restoration in edge regions. On the other hand,
exemplar-based methods and multivariate analysis-based methods
tend to output better results in texture regions. It is well known that
the multivariate analysis-based methods can restore missing textures
more successfully compared to the exemplar-based methods when
sufficient number of training examples cannot be provided. The
remainder of this paper focuses on missing texture restoration us-
ing the multivariate analysis-based methods with discussion of its
details.

There have traditionally been proposed many missing texture
restoration methods using multivariate analysis, and they are based
on texture approximation using various methods such as principal
component analysis (PCA), kernel PCA (KPCA) and sparse repre-
sentation. For example, Amano et al. proposed an effective PCA-
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based method that estimates missing textures by back projection for
lost pixels [11]. Furthermore, by applying the kernel methods to
PCA [20, 21], its improvement can be also realized [12, 13, 14]. Re-
cently, image restoration based on the sparse representation has been
studied [15]–[19], [22, 23]. Mairal et al. proposed a representative
work based on the sparse representation [15], and several improved
methods have been proposed as state-of-the-art methods [16]–[19].
As described above, although the multivariate analysis-based meth-
ods can output better results compared to the exemplar-based meth-
ods from few training examples, their performance still depends on
the number of training examples. Therefore, as the number of train-
ing examples decreases, it becomes difficult to successfully grasp
the relationship between missing areas and their neighboring areas.
Then the restoration performance tends to be degraded.

In this paper, we present a new inpainting method based on 2D
semi-supervised canonical correlation analysis (2D semi-CCA). In
recent years, it has been reported that 2D multivariate analysis meth-
ods such as 2D PCA [24] and 2D CCA [25] can represent visual fea-
tures successfully. Therefore, in the proposed method, we introduce
the 2D CCA into the inpainting for estimating the relationship, i.e.,
the optimal correlation, between missing areas and their neighbor-
ing areas. Furthermore, in order to solve the conventional problem
of not being able to successfully grasp the relationship when suffi-
cient number of training examples cannot be provided, the proposed
method newly derives a restoration algorithm based on semi-CCA
[26]. Semi-CCA is a hybrid version of CCA and PCA and enables
accurate relationship estimation even if sufficient number of training
pairs cannot be provided. Therefore, the proposed method derives
the 2D Semi-CCA for successfully obtaining the relationship to re-
store missing areas. Furthermore, the proposed method monitors er-
rors caused in the new variate space obtained by the 2D semi-CCA to
derive patch priority determining inpainting order of missing areas.
Since these errors correspond to approximation performance, i.e.,
restoration performance, the proposed method adopts them as the
confidence values for determining the patch priority. Consequently,
the proposed method realizes successful inpainting by introducing
the nonconventional approaches using the 2D semi-CCA.

2. INPAINTING BASED ON 2D SEMI-CCA

We present the inpainting method based on 2D semi-CCA in this
section. First, in our method, a patch f (w × h pixels) including
missing areas Ω is clipped from the target image. Next, from the
known areas Ω̄ within the target patch f , we try to estimate the in-
tensities in its missing areas Ω by using the relationship of these two
areas Ω and Ω̄ obtained from the other known parts based on the
2D semi-CCA. Specifically, the proposed method estimates coeffi-
cient matrices and canonical correlation matrices for obtaining the
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relationship (See 2.1). Then, by using the obtained relationship, the
intensities within the missing areas Ω are estimated (See 2.2). The
overview of the proposed method is shown in Fig. 1.

For the following explanation, we define two matrices, which
respectively surround areas Ω̄ and Ω, as X (Rmx×nx ) and Y (Rmy×ny ).
Note that the elements not belonging to Ω̄ and Ω in the matrices X
and Y, respectively, are set to zero.

2.1. Relationship Estimation Based on 2D semi-CCA

In this subsection, we show the relationship estimation based on the
2D semi-CCA. First, from the target image, we clip patches fi in
the same intervals and define all indices of the clipped patches as
I ∈ {1, 2, · · · ,N}. Then, for each patch fi, matrices respectively
corresponding to X and Y are defined as X̃i and Ỹi, respectively.
Furthermore, their centered matrices are respectively defined as Xi =

X̃i − Mx and Yi = Ỹi − My, where Mx =
1
|Jx |
∑

i∈Jx X̃i and My =
1
|Jy |
∑

i∈Jy Ỹi, where we define the following three index sets:

• Jxy: Indices i that X̃i and Ỹi are both known,

• Jx: Indices i that X̃i are known,

• Jy: Indices i that Ỹi are known.

Note that they satisfy the following conditions: Jxy ⊂ Jx ⊂ I and
Jxy ⊂ Jy ⊂ I.

When considering the 2D CCA [25], the following optimization
problem is provided:{

l̂x, r̂x, l̂y, r̂y

}
= arg max

lx ,rx ,ly ,ry
covi∈Jxy

(
lx
′Xirx, ly

′Yiry

)
s.t. var (lx

′Xirx) = 1 and var
(
ly
′Yiry

)
= 1.

On the other hand, when considering the 2D PCA [24], the following
optimization problems are respectively provided:{
l̂x, r̂x

}
= arg max

lx ,rx
covi∈Jx (lx

′Xirx, lx
′Xirx) s.t.

∣∣∣∣∣∣lx

∣∣∣∣∣∣2 = 1,
∣∣∣∣∣∣rx

∣∣∣∣∣∣2 = 1,{
l̂y, r̂y

}
= arg max

ly ,ry
covi∈Jy

(
ly
′Yiry, ly

′Yiry

)
s.t.
∣∣∣∣∣∣ly

∣∣∣∣∣∣2 = 1,
∣∣∣∣∣∣ry

∣∣∣∣∣∣2 = 1.

The semi-CCA can be regarded as a hybrid method of CCA and
PCA [26]. Therefore, the combined optimization problem is utilized.
Note that in the two-dimensional method, it is difficult to simultane-
ously obtain the optimal results l̂x, r̂x, l̂y, r̂y. Thus, in the proposed
method, we fix each side and estimate the remaining side’s trans-
forms. The details are shown below.

[Left Side Derivation]
By fixing the right side vectors r̂x and r̂y, we derive the following
Lagrange multiplier approach in the left side of the 2D semi-CCA:

Ll = α

{
lx
′Cr

xyly −
λl

2
(
lx
′Cr

xxlx − 1
) − λl

2

(
ly
′Cr

yyly − 1
)}

+(1 − α)
[1
2

{
lx
′Dr

xxlx − λl
(∣∣∣∣∣∣lx

∣∣∣∣∣∣2 − 1
)}

+
1
2

{
ly
′Dr

yyly − λl
(∣∣∣∣∣∣ly

∣∣∣∣∣∣2 − 1
)} ]
, (1)

where α is a parameter, Cr
xy =

1
|Jxy |
∑

i∈Jxy Xir̂xr̂′yYi
′ (= Cr

yx
′),

Cr
xx =

1
|Jxy |
∑

i∈Jxy Xir̂xr̂′xXi
′, Cr

yy =
1
|Jxy |
∑

i∈Jxy Yir̂yr̂′yYi
′, Dr

xx =
1
|Jx |
∑

i∈Jx Xir̂xr̂′xXi
′ and Dr

yy =
1
|Jy |
∑

i∈Jy Yir̂yr̂′yYi
′. In order to

obtain the optimal vectors of lx and ly from Eq. (1), we calculate

rl
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Fig. 1. Overview of the proposed inpainting method.

∂Ll

∂lx
= 0 and ∂L

l

∂ly
= 0 , and then, the following generalized eigenvalue

problem can be derived:{
α

[
0 Cr

xy
Cr

yx 0

]
+ (1 − α)

[
Dr

xx 0
0 Dr

yy

]} [
lx

ly

]
= λl

{
α

[
Cr

xx 0
0 Cr

yy

]
+ (1 − α)

[
Ilx 0
0 Ily

]} [
lx

ly

]
, (2)

where Ilx (∈ Rmx×mx ) and Ily (∈ Rmy×my ) are the identity matrices. By
solving Eq. (2), the optimal vectors l̂x and l̂y are obtained.

[Right Side Derivation]
In the same way as Eq. (2) in the left side derivation, by fixing
the left side vectors l̂x and l̂y, we derive the following generalized
eigenvalue problem:{

β

[
0 Cl

xy
Cl

yx 0

]
+ (1 − β)

[
Dl

xx 0
0 Dl

yy

]} [
rx

ry

]
= λr

{
β

[
Cl

xx 0
0 Cl

yy

]
+ (1 − β)

[
Irx 0
0 Iry

]} [
rx

ry

]
, (3)

where β is a parameter, Cl
xy =

1
|Jxy |
∑

i∈Jxy Xi
′ l̂x l̂′yYi (= Cl

yx
′),

Cl
xx =

1
|Jxy |
∑

i∈Jxy Xi
′ l̂x l̂′xXi, Cl

yy =
1
|Jxy |
∑

i∈Jxy Yi
′ l̂y l̂′yYi, Dl

xx =

1
|Jx |
∑

i∈Jx Xi
′ l̂x l̂′xXi and Dl

yy =
1
|Jy |
∑

i∈Jy Yi
′ l̂y l̂′yYi. Furthermore, Irx

(∈ Rnx×nx ) and Iry (∈ Rny×ny ) are the identity matrices. By solving
Eq. (3), the optimal vectors r̂x and r̂y are obtained.

[Iterative Algorithm for Solving Both Sides]
The proposed method iteratively estimates the optimal transforms of
one side by fixing the other side’s transforms. Furthermore, when
calculating the transforms of PCA or CCA, we generally do not cal-
culate only the vectors l̂x, l̂y, r̂x and r̂y, but the multi-dimensional
matrices L̂x, L̂y, R̂x and R̂y. Therefore, Eqs. (2) and (3), i.e., the
problems of the left and right sides, are respectively rewritten as{

α

[
0 Ĉr

xy

Ĉr
yx 0

]
+ (1 − α)

[
D̂r

xx 0
0 D̂r

yy

]} [
Lx

Ly

]
= Λl

{
α

[
Ĉr

xx 0
0 Ĉr

yy

]
+ (1 − α)

[
Ilx 0
0 Ily

]} [
Lx

Ly

]
, (4)

{
β

[
0 Ĉl

xy

Ĉl
yx 0

]
+ (1 − β)

[
D̂l

xx 0
0 D̂l

yy

]} [
Rx

Ry

]
= Λr

{
β

[
Ĉl

xx 0
0 Ĉl

yy

]
+ (1 − β)

[
Irx 0
0 Iry

]} [
Rx

Ry

]
, (5)
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Input
- Two dimensional data

{
X̃i ∈ Rmx×nx

}
and
{
Ỹi ∈ Rmy×ny

}
- The size of the canonical variable matrix: dl × dr

Output
- Left transforms L̂x ∈ Rmx×dl , L̂y ∈ Rmy×dl

- Right transforms R̂x ∈ Rnx×dr , R̂y ∈ Rny×dr

- Correlation matrices Λ̂l ∈ Rdl×dl , Λ̂r ∈ Rdr×dr

Do centering the two-dimensional data to get {Xi} and {Yi}.
Initialize R̂x and R̂y.
Repeat
• Compute the following matrices: Ĉr

xy (= Ĉr
yx
′), Ĉr

xx, Ĉr
yy,

D̂r
xx and D̂r

yy.

• Compute dl largest eigenvalues Λ̂l and their correspond-
ing generalized eigenvectors L̂x and L̂y by Eq. (4).

• Compute the following matrices: Ĉl
xy (= Ĉl

yx
′), Ĉl

xx, Ĉl
yy,

D̂l
xx and D̂l

yy.

• Compute dr largest eigenvalues Λ̂r and their correspond-
ing generalized eigenvectors R̂x and R̂y by Eq. (5).

until (converged)

Fig. 2. Outline algorithm of the 2D semi-CCA based relationship
estimation.

where Λl and Λr are respectively eigenvalue matrices whose diag-
onal elements contain the correlation coefficients. Several matrices
shown in the above two equations are defined below. In Eq. (4),
Ĉr

xy =
1
|Jxy |
∑

i∈Jxy XiR̂xR̂′yYi
′ (= Ĉr

yx
′), Ĉr

xx =
1
|Jxy |
∑

i∈Jxy XiR̂xR̂′xXi
′,

Ĉr
yy =

1
|Jxy |
∑

i∈Jxy YiR̂yR̂′yYi
′, D̂r

xx =
1
|Jx |
∑

i∈Jx XiR̂xR̂′xXi
′ and

D̂r
yy =

1
|Jy |
∑

i∈Jy YiR̂yR̂′yYi
′. Furthermore, in Eq. (5), Ĉl

xy =

1
|Jxy |
∑

i∈Jxy Xi
′L̂xL̂′yYi (= Ĉl

yx
′), Ĉl

xx =
1
|Jxy |
∑

i∈Jxy Xi
′L̂xL̂′xXi,

Ĉl
yy =

1
|Jxy |
∑

i∈Jxy Yi
′L̂yL̂′yYi, D̂l

xx =
1
|Jx |
∑

i∈Jx Xi
′L̂xL̂′xXi and

D̂l
yy =

1
|Jy |
∑

i∈Jy Yi
′L̂yL̂′yYi. In this way, by iterating Eqs. (4)

and (5), the optimal transforms L̂x, L̂y, R̂x, R̂y and the correlation
matrices Λ̂l, Λ̂r in Fig. 1 can be obtained. Finally, we show the
outline of our 2D semi-CCA in Fig. 2.

The proposed method can use not only training pairs (Xi,Yi)
(i ∈ Jxy) but also the principle components respectively obtained
from all examples Xi (i ∈ Jx) and Yi (i ∈ Jy). Therefore, more suc-
cessful relationship estimation can be expected. The details of this
advantage using the semi-supervised scheme are reported in [26].

2.2. Missing Intensity Estimation Algorithm

In the proposed method, we try to estimate Y from X by using the
derived results in the previous subsection. Specifically, as shown in
Fig. 1, we can estimate the optimal result by the following equation:

Ŷ =
(
L̂′y
)+
Λ̂lL̂′x (X −Mx) R̂xΛ̂

r
(
R̂y

)+
+My,

where (·)+ represents a pseudo inverse matrix. In this way, the
proposed method enables the estimation of the missing intensities
within Ω of the target patch f .

Finally, we clip patches including missing areas and perform
their restoration to estimate all missing intensities. Note that in this
procedure, we must determine the patch priority. In our method, we
adopt an improved version of the method in [9]. Specifically, given

a patch fp centered at pixel p that is in the fill-front of the missing
areas within the target image, its priority P(p) is defined as follows:

P(p) = C(p) · D(p), (6)

where C(p) and D(p), which respectively correspond to confidence
term and data term, are defined as follows:

C(p) =

∑
q∈ fp

∩
(I−Θ) C(q)

| fp|
,

D(p) =
|∇I⊥p · np|
γ

.

In the above equations, I and Θ are the whole areas of the target im-
age and whole missing areas, respectively. Furthermore, | fp| is the
number of pixels included within the target patch fp (w × h pixels) .
Then γ is a normalization factor (e.g. γ = 255 for a typical grayscale
image), ∇I⊥p is an isophote at pixel p, and np is a unit vector or-
thogonal to the fill-front at pixel p. Note that C(p) is initially set as
C(p) = 0 ∀p ∈ Θ and C(p) = 1 ∀p ∈ (I − Θ).

After restoring the target patch fp, the proposed method newly
assigns a new value of the confidence term for its restored area.
Specifically, we focus on the following evaluation criterion E and
denote it as ξ(p):

E =
∣∣∣∣∣∣∣∣∣∣L̂′x (X −Mx) R̂x − Λ̂lL̂′y

(
Ŷ∗ −My

)
R̂yΛ̂

r
∣∣∣∣∣∣∣∣∣∣2

F
, (7)

where Ŷ∗ is a matrix whose area not included in Ω is set to zero
for Ŷ. The confidence term of pixel q in the restored area Ω of the
target patch fp centered at p is simply defined by C(q) = exp

(
− ξ(p)
ζ

)
,

where ζ is a parameter. The proposed method monitors the criterion
obtained in Eq. (7), which corresponds to the error caused in the
new variate space obtained by the 2D semi-CCA. Then C(q) derived
from this criterion can be regarded as the restoration performance,
i.e., the confidence, of the target restored pixel q. Therefore, it is
reasonable to adopt C(q) derived from the criterion in Eq. (7) into
the proposed method using the 2D semi-CCA. In this way, we can
restore all of the missing areas within the target image according to
the priorities in Eq. (6).

3. EXPERIMENTAL RESULTS

In this section, we verify the performance of the proposed method
by comparing with other existing works. In this experiment, we pre-
pared four test images shown in Fig. 3 and added missing areas to
these test images. Note that the positions of the missing areas are
previously known. The first and second rows shown in Fig. 3 repre-
sent the original images and their corrupted images including miss-
ing areas, respectively. For these corrupted images, we performed
the restoration of their missing areas by using the proposed method,
and the obtained results are shown in the third rows. In this paper,
we set α = β = 0.9.

Next, in order to compare the performance of the proposed
method with those of other existing works, we show some quanti-
tative evaluation results. For the four test images shown in the top
row of Fig. 3, we randomly added missing blocks of 8 × 8 pixels
with changing the ratio of the missing pixels. Then the obtained
corrupted images were restored by the proposed method and some
existing methods, the PCA-based method [11], the KPCA-based
method [12], the KPCA-based method including the clustering
scheme [14], the sparse representation-based method [18] and the
2D CCA [25]-based method. The methods in [11] and [12] are
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Test image 1 Test image 2 Test image 3 Test image 4

Fig. 3. Inpainting results obtained by the proposed method. Four test images are used, and the top, center and bottom rows are original
images, corrupted images and inpainting results by our method, respectively. The sizes of Test images 1–4 are 480 × 360 pixels, 640 × 480
pixels, 640× 480 pixels and 480× 360 pixels, respectively. The percentages of missing areas are 10.7 %, 7.1%, 5.4% and 8.9 %, respectively.

(a) (b) (c) (d)

Fig. 4. Relationship between the ratio of missing pixels and the SSIM index of the inpainting results obtained by each method: (a)–(d)
respectively show the results obtained from Test images 1–4 shown in Fig. 3.

benchmarking methods in the recent studies using multivariate anal-
ysis. Furthermore, we regard the methods in [14] and [18] as the
state-of-the-art methods. Since the proposed method corresponds
to the improved method of the 2D CCA method [25], we show the
results obtained by using this method, that is, the results when using
α = β = 1.0. On the other hand, if we set α = β = 0.0, it only
becomes 2D PCA of Xi and Yi, and their relationship cannot be
obtained for reconstructing missing areas. Therefore, we used other
PCA-based methods [11, 12, 14]. Figure 4 shows the relationship
between the ratio of the missing pixels and the SSIM index [27]
calculated from the restored images. From these results, we can see
the proposed method outputs the best results1.

1In Fig. 3, we only show the inpainting results of the proposed method
due to the limitation of pages. All of the inpainting results of the images
shown in the second row of Fig. 3 by our method and the previously reported
methods [11, 12, 14, 18, 25] in the same conditions can be confirmed in the
following Web site.
http://www-lmd.ist.hokudai.ac.jp/wp/wp-content/uploads/ICIP2014-
Ogawa.pdf

In the proposed method, we introduce the 2D semi-CCA into the
inpainting. This enables accurate relationship estimation between
missing areas and their neighboring areas, and it can be confirmed
from the results shown in Figs. 3 and 4. Furthermore, the proposed
method adopts the patch priority estimation realized by monitoring
errors caused in the new variate space obtained based on the 2D
semi-CCA. This also improves the performance of the proposed in-
painting method.

4. CONCLUSIONS
In this paper, we have presented a new inpainting method using 2D
semi-CCA. The proposed method estimates the relationship between
missing areas and their neighboring areas by using the 2D semi-CCA
to realize successful inpainting even if sufficient number of training
pairs cannot be provided. Furthermore, by monitoring errors caused
in the new variate space, successful patch priority estimation can be
realized. Consequently, from the experimental results, it can be con-
firmed that our method enables more successful inpainting compared
to the previously reported methods.
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