
FAST LOG-GABOR-BASED NONLOCAL MEANS IMAGE DENOISING METHODS 
 

Song Zhang and Huajiong Jing  
 

Hangzhou Dianzi University, China 
 

ABSTRACT 
 
This paper explores the possibility of incorporating log-
Gabor features into nonlocal means image denoising 
framework. It is found that log-Gabor features are better 
choice for this task than previously studied geometrical 
features. Moreover, we combine log-Gabor features with 
original image patch information to arrive at mixed 
similarity measure, which leads to further denoising 
performance improvement. In addition, we test a random 
projection-based approach to nonlocal means speed-up, 
guided by the well-known Johnson-Lindenstrauss lemma. 
Experimental results are quite encouraging. 
 

Index Terms— Nonlocal means, log-Gabor features, 
mixed similarity measure, dimensionality reduction, 
Johnson-Lindenstrauss lemma 
 

1. INTRODUCTION 
 
In this paper, we focus on typical image denoising problem 
formulated as 
 ),()()( inixiy +=  (1) 
where x and y are the original and corrupted images 
respectively, and n is AWGN process with variance of σ 2 . 
The goal is to restore x from y. 

Most of modern adaptive filtering approaches [1] to 
image denoising take the following form: 
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where the mechanisms for computing weights wij’s 
determine the types of concrete denoising algorithms and 
their performances.  

Imagine the virtual oracle scenario, where we have 
precise knowledge of the original image. Given this 
assumption, the optimal weights can in principle be 
obtained by optimizing the bias-variance trade-off resulting 
from the corresponding filtering operations. Although the 
derived expressions may still be very complicated, 
intuitively the correct weight wij should be approximately 
decreasing function of the difference |xi − xj| between pixels 
i and j. The observations made above are easily understood 
by considering the extreme noise-free case, where the 
optimal weight wij = 1 if xi = xj and wij = 0 otherwise (under 

the condition that there exist pixels with their intensities 
equal to that of pixel i). 

However, the original image is simply unavailable. 
Even more importantly the noise makes it rather difficult to 
directly estimate the similarity (or dissimilarity) between 
pixels. Buades [2] proposed nonlocal means (NLM) 
solutions to these problems by estimating pixel similarity 
based on patch information around the associated center 
pixels. Specifically, in NLM the filtering weights wij’s is 
computed as 
 ( ),),( jiij PPDKw −=  (3) 
where K(⋅) is the kernel function and D(Pi, Pj) measures the 
similarity (or dissimilarity) between two patches 
surrounding pixels i and j, say Euclidian difference between 
them.  

The rationale behind the patch computation in NLM 
can be easily seen if we assume that the original image is 
piece-wise constant and the patches are completely 
contained within one uniform region, where the patch 
operation is perfect means to reduce the noise effect and 
yield much more accurate similarity estimates than its pixel-
wise counterpart. Nevertheless, for more complicated image 
models it becomes uncertain whether such patch-based 
estimates are optimal. In fact, there have been some works 
to generalize NLM weights definition (3) to  
 ( ),),( jiij FFDKw −=  (4) 
where Fi and Fj are feature vectors extracted from local 
neighborhoods corresponding to pixels i and j. Ji et al. [3] 
introduced the Zernike moments into NLM filter and 
reported improved denoising performance than the original 
NLM filter. Grewenig et al. [4] studied systematically 
rotationally invariant similarity measures for NLM based on 
geometric moments including Hu moments and Zernike 
moments. Wang et al. [5] proposed Gabor features-based 
NLM denoising scheme, yet solely aimed at purely textured 
images. 

Inspired by these works, the current paper explores the 
possibility of incorporating log-Gabor features into NLM 
image denoising, more specifically estimating pixel 
similarity by comparing associated local log-Gabor feature 
vectors. It is found that these kind of geometric features 
perform better for NLM denoising than those previous 
studied. Furthermore, we combine the log-Gabor features 
with image patch information to obtain mixed similarity 
measures, resulting in more powerful adaptivity to local 
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image characteristics and in turn additional denoising 
performance boost. 

On the other hand, lifting to higher dimensional feature 
space for better similarity estimates is by no means free 
lunch. The curse of dimensionality is just the cost to pay. 
There have been much efforts made to reduce the 
complexity of NLM while incurring little performance loss. 
This paper studies a random projection-based approach to 
NLM speed-up and tests extensively the resulting 
complexity-performance trade-offs. Experiments results 
show that the acceleration scheme can achieve a net 3-fold 
speed-up with negligible PSNR loss. 

The rest of the paper is structured as follows. Section 2 
first highlights the advantages of log-Gabor features with 
respect to Gabor features. Next the pipeline of log-Gabor-
based NLM denoising algorithm is described, after which 
we introduce the mixed similarity and filtering weights. 
Section 3 explains the principles of random projection-
based NLM acceleration. We give experiment results in 
Section 4 to prove the effectiveness of the proposed 
modifications. Finally, Section 5 draws conclusions. 
 

2. LOG-GABOR-BASED NLM DENOISING 
 

2.1. Log-Gabor vs. Gabor Features 
 
As the most widely-used image analysis tool, Gabor 
features are produced by a multi-scale and multi-orientation 
filter bank with parametric frequency response as follows: 
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where (u0, v0) is center frequency and σ determines filter 
bandwidth. Despite its theoretically optimal joint spatial-
frequency localization capability, Gabor filter bank is not 
flawless. In practice, to prevent strong interference of DC 
component with feature extraction, the associated filters are 
required to have sufficient DC suppression, which limits the 
maximal attainable bandwidth of Gabor filters (about 1 
octave) and in turn the high-frequency coverage efficiency 
of Gabor filter bank.  

Field [6] introduced simple logarithms into frequency 
response to arrive at log-Gabor filter bank with parametric 
response modified as 
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where (f, θ) is polar frequency description, (f0, θ0) is center 
frequency, while σf

2 and σθ
2 denote the bandwidths in radius 

and angle respectively. It is easily seen that log-Gabor filters 
have perfect DC suppression (vanishing response) and much 
better high-frequency characterization capability than their 
Gabor counterparts. In addition, the tailing behaviors of log-
Gabor filters are closer to 1/f law dominating natural images 
than Gabor filters. 

2.2. Log-Gabor-Based NLM Denoising Scheme 
 
The steps of the proposed log-Gabor-based denoising 
scheme follow essentially those of [5] with some 
modifications. After application of log-Gabor filter bank to 
input image, we obtain M feature maps, or at each pixel 
location there is an M-dimensional feature vector, where M 
is the number of filter bank members. To reduce the impact 
of noise on feature extraction accuracy, low-pass filtering 
with minimal spatial support (i.e. minimal high-frequency 
loss) is performed on each feature image. Specifically [5],  
 ,kk g zv ∗= ρ  (7) 
where zk is the original kth feature image and gρ is Gaussian 
filter with spatial support size ρ.  

Due to different output ranges from different feature 
maps, normalization is necessary for correct estimation of 
pixel similarity based on log-Gabor feature vectors. In this 
paper, we normalize the corrected feature maps v’s to the 
range of input noisy image, that is 
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Finally, the filtering weights are computed by 
instantiating (3) as 
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where hLG is smoothing constant and the similarity (or 
dissimilarity) between pixels i and j is computed as 
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2.3. Mixed Similarity and Weight 

It is found that the new log-Gabor-based NLM algorithm 
performs quite well for denoising most of natural images, 
yet not so for denoising images with relatively strong 
regular texture structures. Image patch information is 
believed to be more suitable for similarity estimation among 
such repetitive patterns. Therefore, we combine the log-
Gabor features with patch information to arrive at the 
following mixed similarity and weights: 
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where DP(i, j) is a kind of distance, say mean squared 
difference or windowed squared difference, between 
patches surrounding pixels i and j respectively, and hP is the 
corresponding smoothing constant. Such combination may 
be thought of a new level of lifting for flattening image 
local manifolds, and has interesting connection with 
previous works such as iconic feature-based image 
registration [7] and attribute distance weighted average-
based denoising [8]. 
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3. RANDOM PROJECTION FOR NLM SPEED-UP Table 1. Denoising results (PSNR, in dB) comparison between the 
proposed schemes (the last 2 columns) and several other 
geometrical features-based NLM algorithms including baseline 
NLM. Noise intensity σ = 20, and each figure is the average of 
those corresponding to 5 independent noise realizations. 

 Buades [2] Ji [3] Grewenig [4] Wang [5] log-Gabor Mixed 

Barbara 29.80 27.29 25.60 24.72 27.51 30.02 

Bridge 25.81 24.84 24.66 24.04 26.24 26.48 

CMan 29.33 27.67 24.92 25.28 29.24 29.69 

Couple 28.78 28.9 27.37 24.47 29.63 29.86 

Hill 27.40 26.79 26.80 24.22 27.76 28.20 

Lema 31.24 31.3 30.50 24.34 32.01 32.40 

Man 29.23 28.93 28.40 25.17 29.96 30.22 

Peppers 29.23 29.38 28.7 25.72 30.55 30.83 

 
The most natural approach to removing curse of 
dimensionality is to project the original data onto an 
informative low-dimensional space. Besides, such operation 
tends to produce improved performances [9], since most of 
high-dimensional data actually live in low-dimensional 
manifolds. However, typical ways to mine the internal low-
dimensional structures, say PCA or its nonlinear version, are 
themselves a little bit time-consuming, which may cancel to 
some extent the benefits they bring in terms of speed.  

There does exist another attractive solution, that is, by 
random projection. Johnson and Linenstrauss [10] first 
proved the following seminal lemma: 
Lemma: Assume 0 < ε < 1 and a collection S composed of 
n points in Rd. If k ≥ k0 = O(ε−2logn), there exists a linear 
mapping f from Rd to Rk, such that for any u, v ∈ S 
 .)1()()()1( 222 vuvfufvu −+<−<−− εε  (12) 

Moreover, the linear mapping guaranteed by the lemma can 
be readily realized as random projection, a consequence of 
the law of large numbers. Unlike PCA-like dimensionality 
reduction methods, the construction of random projection 
matrix is almost effortless, which is desirable for massive 
data processing problems, such as searching and distance 
computation. 

The complexity analysis of random projection-based 
NLM is immediately available. Given N pixels of input 
image, we estimate the similarity between two pixels by 
computing distance between two corresponding M-
dimensional feature vectors. Consider the more practical 
semi-nonlocal filtering paradigm of NLM, i.e. confining the 
filtering range to neighborhood of size L. Thus the 
complexity of direct implementation of NLM is O(NML). 
On the other hand, given the random projection matrix, the 
complexity of projecting all N M-dimensional feature 
vectors onto lower-dimensional RK is O(NMK), while that of 
post-dimensionality-reduction NLM computation becomes  
O(NLK). As noted before, the complexity of the 
construction of random projection matrix is negligible 
compared with that of projection and similarity evaluation. 
In summary, the acceleration ratio is about ML/(MK+KL). 
For typical parameter values adopted in the experiment, M = 
60, K = 20, L = 200, these amount to more than 2-fold 
speed-up. 

Despite the theoretical guarantee, the applicability of 
the asymptotic results to similarity computation and 
denoising remains to be studied. In fact, this paper is not the 
first attempt to incorporate random projection into NLM. 
Lai et al. [11] proposed the random projection-based 
approach to NLM acceleration, yet only for baseline NLM. 
Besides, the results reported in [11] are rather limited. We 
extend the idea to general geometrical feature-based NLM, 
and perform extensive experiments on the complexity-
performance trade-off and the impact of the type of random 

projection on denoising performances. Therefore, the 
current work is still believed to be meaningful and 
constitute complement to [11].  
 

4. EXPERIMENTAL RESULTS 
 
The parameter settings for log-Gabor-based NLM are as 
follows. There are 10 scales in log-Gabor filter bank, with 
the maximal frequency and the ratio between neighboring 
frequencies to be 0.5 and 2 respectively. Meanwhile, we set 
6 different orientations {0, π/6, π/3, π/2, 2π/3, 5π/6}, thus 
combined with scale settings leading to 60-dimensional 
feature vector associated with each pixel. Bandwidth 
constants σf = loge0.55 andσθ = π/7.2, while smoothing 
constants hLG = 0.5σ and hP = σ, where σ is noise standard 
deviation. Filtering window is set to be 13×13. The results 
of the proposed method are compared with those of baseline 
NLM [2], Zernike moments-based NLM [3], Hu moments-
based NLM [4] and Gabor-based NLM [5], which are 
implemented strictly as specified in the original papers or 
with codes shared by the authors. 
 
4.1. Denoising Performances Comparison 
 
We have carried out denoising experiments on different 
natural images across a wide range of noise levels. Due to 
limit of space, only results under typical noise intensity (σ = 
20) are shown, with similar phenomena observed for other 
noise levels.  

The superiority of log-Gabor NLM for denoising most 
of test images with respect to baseline NLM and other 
geometrical feature-based NLM is clearly seen from Table 1. 
However, for images with more regular texture structures 
such as Barbara, the log-Gabor-based NLM does not 
perform quite well. After combination of log-Gabor features 
with patch information, the resulting mixed similarity-based 
NLM achieves even better denoising performances, with 
significant boost for images like Barbara, where log-Gabor-
based NLM fails. 

 
4.2. Tests on Random Project-based Speed-up for NLM 
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Table 2. Performance-complexity trade-offs by random projection 
method 1 under noise level σ = 20. Each figure is generated by 
averaging results corresponding 5 independent random matrix 
realizations. The column with header “60” amounts to no random 
projection. 

 60 50 40 30 20 10 

Barbara 27.51 27.53 27.53 27.56 27.25 26.98 

Bridge 26.23 26.22 26.18 26.15 26.02 25.70 

CMan 29.17 29.11 29.11 29.05 28.92 28.63 

Couple 29.63 29.57 29.50 29.49 29.38 28.99 

Hill 27.77 27.76 27.72 27.70 27.63 27.20 

Lema 32.01 31.93 31.90 31.77 31.67 31.17 

Man 29.96 30.01 30.01 29.93 29.86 29.40 

Peppers 30.64 30.59 30.54 30.49 30.32 29.85 Fig. 1. The impact of the type of random projection method on 
denoising performance for test image “Bridge” under noise level σ
= 20. 

There are several different methods to construct random 
projection matrix. While they have similar asymptotic 
performance guarantees, the practical difference between 
them when incorporated into NLM framework remains to be 
studied. We choose 6 random matrix construction methods. 
Method 1 corresponds to that used for constructive proof of 
J-L lemma [10]. This also amounts to normal orthogonal 
version of Gaussian matrix (with components generated by 
i.i.d. standard Gaussian distribution, termed method 2). 
Method 3 and method 4 are proposed in [12] for more 
convenient construction. The distribution underlying 
Method 3 give equal probanility to 1 and −1, while that of 
method 4 assigns greater probability to 0, making the 
constructed matrix very sparse, which is desirable for fast 
matrix-vector multiplication computation. Method 5 and 
method 6 are the normal and orthogonal counterparts of 
method 3 and method 4 respectively. 

We first test the performance-complexity trade-off 
associated with random projection, i.e. the impact of the 
reduced dimensionality on denoising performance. In this 
paper, random projection is applied to log-Gabor feature 
vectors to verify its effectiveness. Again due to length limit, 
only results corresponding to a typical noise level and 
projection matrix construction method combination are 
shown. From Table 2, it is observed that reduction of 
dimensionality from 60 to 20 only incurs 0.2-0.3 dB loss in 
PSNR, while further dimensionality reduction may cause 
significant decrease in performance. While these confirm 
the feasibility of random projection-based acceleration 
scheme, it should be noted that the phenomena observed 
here are rather different with those in [11]. 

We also study the impact of the type of projection 
matrix construction method on the denoising performance. 
Fig. 1 gives typical results. It is seen that the normal and 
orthogonal versions perform slightly better than their plain 
counterparts, yet with additional cost associated with 
normalization and orthogonalization. 
 

5. CONCLUSIONS 

In this paper, we incorporate log-Gabor features into NLM 
framework for improved denoising performance. Further 
combination of log-Gabor features with patch information 
leads to mixed similarity and in turn to additional 
performance lift. We also study and test extensively the 
random projection-based NLM speed-up schemes, including 
quantitative analysis of performance-complexity trade-off 
and the impact of random projection method on denoising 
results.  

Some future works are in sight. Combination of more 
meaningful features is believed to yield more powerful 
similarity estimates, in the spirit of [9]. On the other hand, 
while the results of the current paper are much more 
informative than those of [11], more efforts are needed to 
design practical random projection-based NLM denoising 
scheme. 
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