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ABSTRACT 
 

Plenoptic cameras based on micro lens arrays as well as multi 

aperture cameras are able to capture a multitude of images with 

slightly shifted viewpoints. Although the amount of parallax 

between adjacent views is limited, precautions have to be taken in 

order to avoid alias when performing direct lightfield rendering. 

Against this background, we present an approach for the dense 

reconstruction of a lightfield based on a sparse lightfield acquired 

from a multi aperture camera with subsequent disparity estimation 

and depth image based view interpolation. Results show that the 

approach is suitable for all-in-focus-rendering. 

Index Terms— Lightfield, multi-aperture camera, plenoptic 

camera, view rendering 

 

1. INTRODUCTION  
 

Since the first presentation of a commercial hand-held plenoptic 

camera by Ng in 2005 [1], the interest on this technology which 

previously focused on research in the academic sector [2], [3] was 

extended towards industrial applications and consumer electronics. 

Lightfield technology promises effects like digital refocus, free-

viewpoint or rendering of synthetic apertures. However, many 

implementations show an inferior image resolution compared to 

traditional cameras. Active research is performed in the field of 

optics and algorithmic design with the goal to overcome this 

problem and to improve image quality. 

The most important designs include different types of multi-

camera arrays and plenoptic cameras like the ones commercially 

available by Raytrix [4], Lytro [5] or the PiCam presented by 

Pelican Imaging [6]. The basic principles of these cameras are 

similar while the implementations come with different baselines, 

resolutions, depth of field and number of views.  

Multi camera-arrays are typically built from off the shelf cameras 

with no special requirements and are used for rendering a virtual 

camera at a position within the dimensions spanned by the array. 

Due to the relative low density of real camera positions additional 

information about the depth of objects in the scene is required for 

exact rendering of virtual camera positions [7].  

In contrast a typical plenoptic camera as presented by Georgiev [8] 

and Ng [1] uses a microlens array in front of the sensor and an 

additional main lens. The angular sampling of the lightfield is 

denser compared to an array but due to the small baseline the 

amount of parallax is lower.  

The PiCam [6] uses a total of 16 views. It does not require a main 

lens and can be built in a very compact way. Therefore, 

Venkataraman et al. [6] expect its application in mobile devices.  

 

The overlap between the single images of these cameras is very 

high. In combination with super-resolution approaches, the authors 

in [6] claim that the final output has higher resolution compared to 

the resolution of each single micro image.  

A similar design was presented by Brückner et al. [9]. Their multi-

aperture camera uses an array of 17x13 channels and also omits the 

main lens. In [10] Oberdörster et al. presented a stitching algorithm 

that can merge the channels using a constant disparity. As a result 

the final image shows sharp objects only at a specific distance and 

contains artifacts due to the missing parallax correction. As long as 

the raw lightfield data is preserved, digital refocus is possible by 

selecting the appropriate disparity value. 

Against this background we present an improved processing chain 

for a multi-aperture camera. By combining disparity estimation 

with a subsequent depth-image-based rendering, a parallax- 

compensated result image can be generated. 

The remainder of the paper is structured as follows: In section 2 we 

will have a brief look on specific properties of the multi-aperture 

camera and the necessary algorithms. Section 3 will explain the 

merging of disparity maps and how we can use them to render a 

final image. Results are presented in section 4 along with a 

comparison to a approach proposed by Georgiev in [8] and [11]. 

 

2. PREVIOUS WORK  
 

2.1. Electronic cluster eye Camera (eCley) 
 
In this paper we use the eCley camera presented in [9] which has 

17x13 channels. Compared to a traditional camera with the same 

field of view (FOV) it has shorter track length. 

According to [10], the overlap between channels is selected half 

the FOV. This means that a pixel at infinite distance can only be 

observed in adjacent channels. This is an important difference 

compared to the PiCam which has to be taken into account while 

designing the disparity estimation process. On the other hand, the 

eCley offers a larger FOV after combining all channels.  

The camera sensor delivers a total resolution of 1536x2048 pixels 

while each channel has a resolution of 59x59 pixels.  

 

2.2. Disparity estimation  
 
A critical point in the processing chain for lightfield cameras is the 

disparity estimation. These algorithms provide estimates for the 

geometry corresponding to the scene. Georgiev presented in [8] an 

algorithm that computes disparity values for each microlens image 

and uses them to improve the rendering. This approach was further 

improved by Bishop [12], who’s approach generates disparity 

maps at full resolution. 
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Figure 1: Merging process. Left: The horizontal merged 

disparity map at position (1,2) is obtained by merging disparity 

to left with disparity to right. Center: Vertical merge of 

position (2,1) with disparity to top and to bottom. Right: 

Merging of horizontal and vertical disparity maps to obtain a 

final disparity map at position (2,2). 

In this work we used the algorithm presented in [13] to find an 

estimate for the disparity between adjacent channels. Typically, 

this algorithm is used for images taken with a camera array and 

computes stereo disparity estimates. A comparison with the 

approach from [8] and [11] is performed. 
 

2.3. View rendering 
 

Plenoptic and multi-aperture cameras do not directly deliver a final 

image. Instead, they deliver a number of images that show only a 

part of the scene. To exploit their full potential an additional step is 

required that fuses different views or generates new views.  

As shown in [7], complexity and additional requirements for this 

step depend on the lightfield density. For very high densities, 

image rendering is possible without any knowledge about the 

underlying geometry. In case of a sparser lightfield sampling, 

image rendering requires additional information about the 

geometry in the scene which can be obtained by disparity 

estimation, a depth-camera, or a geometric model.  

A depth-based rendering algorithm for plenoptic cameras was 

proposed by Georgiev [8]. In principle, this type of processing 

generates views with all objects in focus given high quality 

disparity maps. In order to obtain additional effects like refocus, 

additional processing steps are required. An improved processing 

chain that proposes a depth estimation algorithm in combination 

with a rendering algorithm specifically designed for plenoptic 

cameras has been presented by Bishop in [12]. However, their 

algorithm requires many floating point operations and is therefore 

hard to implement in hardware.  
 

3. PROPOSED METHOD  
 

We start from image data containing 17x13 individual channels. 

An example image is presented in Figure 4 (left). Details about the 

underlying pre-processing can be found in [14]. These single 

channel images are used as input to our processing chain. In order 

to increase precision and minimize the influence of rounding errors 

the channel images are upsampled by a factor two leading to a 

channel resolution of 118x118 pixels. 
 

3.1. Stereo disparity estimation and merging 
 

In the first processing step we estimate disparities between 

adjacent channels. Starting in the first row we compute disparities 

between the first and the second image and obtain one disparity 

map with disparities pointing from the left image to the right one 

and a disparity map with opposite disparities. This step is followed 

by disparity estimation between the second and the third image.  

 

Figure 2: Cameras 1 and 2 capture images with parallax d. The 

target view T is below the baseline of channels. A projection of 

the red dashed ray in the target view can be obtained by 

warping the channel images to position V. l denotes the 

warping vector and is selected such that the targeted ray 

crosses the center of the warped view in V. 
 

This continues to the end of the row and is repeated for every row. 

Similarly, we compute disparities from top to bottom images 

starting with the first image in the first column and estimate the 

disparity between this image and the image below. 

This is repeated for the second and the third image, continues to 

the end of the column and is repeated for every column. 

Unfortunately, these disparity maps might contain errors that need 

to be corrected by a subsequent confidence check and merging 

process. Possible errors include missing disparity values as well as 

invalid values. The merging process is depicted in Figure 1 and 

will be described in detail in the following. For all camera 

positions except the first and the last column we merge the 

disparity to the left with the disparity to the right and obtain a 

horizontally merged disparity map. We need to skip the first and 

last column as they don’t have a disparity to the left or to the right, 

respectively. This step simply compares the disparities in both 

maps. If the difference for a pixel is below a threshold ϴ an 

average value is computed and set in the output disparity map. If 

the difference is too high, the disparity at this point is marked as 

invalid. If only one input disparity map has a valid value it is set in 

the output map. This step has of course to be repeated for the top 

and bottom disparity maps to obtain vertically merged maps. In 

this case we need to skip the first row and the last row.  

Next, we obtain merged disparity maps for the positions in the first 

and in the last row. Here we only have a disparity map to the 

bottom or to the top respectively instead of a vertically merged 

disparity map. The merging is the same as in the previous step. 

Accordingly, we apply the same step on the first and last column 

except the first and the last row.  

Similar to the previous step we merge the obtained horizontal and 

vertical disparity maps to get a final disparity map for each camera 

position. During the merging process, we again compare disparity 

from the input disparity maps. In the case of inconsistent 

disparities, the luminance gradients in vertical and horizontal 

directions are analyzed using the Sobel operator. Based on the 

idea, that disparity estimation is more reliable at edges orthogonal 

to the search direction, the disparity value from the horizontal or 

vertical search directions are chosen depending on the gradients. 

Finally we need to merge the disparity maps in the corners. As an 

example, we obtain the top-left disparity map by merging the 

disparity map to the right with the disparity map to the bottom. 

This step is repeated for all other corners with the appropriate 

inputs. 
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Figure 3: Channel 2,1 is warped to the position of view V. To 

find the target pixel in the center of V we need to warp only the 
disparity values along the shifted vector l. These pixels are 

marked in channel 2,1.  

3.2. Parallax compensated view rendering 
 
The disparity maps obtained are now used to render an all-in-focus 

image. A one dimensional model for the rendering is depicted in 

Figure 2. The extension towards 2D data is straightforward. The 

figure shows the position of the sub-cameras at the top and the 

position of the virtual target view at the bottom.  

The rendering algorithm projects rays incident at the sub cameras 

and finds their corresponding position in the target view. As Figure 

2 shows it is not possible to get a direct projection for every ray as 

is denoted by the red dashed ray. To obtain a projection for this ray 

we can warp the image from camera 1 by a distance l and obtain a 

view V. By definition we select l such that the targeted ray 

intersects with this warped view in its center. As one can see in 

Figure 3, for most pixels it is even possible to warp up to four 

channel images. Each of these channels can be warped to obtain a 

view at V and the targeted pixel in the center. At the end we need 

an additional step to merge these rendering results.  

The process has to be carried out for every pixel in the final image. 

Relative to a given camera position, a channel image needs to be 

warped forward by an amount u in horizontal direction and v in 

vertical direction to obtain a view at V. The disparity in the center 

of V can subsequently be used for a backward warping to compute 

the target pixels' intensity value. 

As we are only interested in the disparity value of the center pixel 

of our view we don’t want to warp the full disparity map. Instead, 

we developed an optimized algorithm that is depicted in Pseudo 

code 1. In the forward warping step we only select the disparity 

values along the direction of l as shown in Figure 3. This vector is 

defined by u and v and can also be expressed by its length l and 

angle α. Given these two variables we know that the disparity 

value we are looking for can be found somewhere on the path 

between the center of the sub camera image (i.e. Channel 2,1) and 

the target view V. This path is shown in Figure 3 together with the 

marked pixels in channel 2,1. In addition with the maximum 

allowed disparity dispMax we can further decrease the search area 

by computing the maximum distance radius from the center pixel 

in the target view V to the pixel we are looking for assuming that 

all disparities have positive values. These selected pixels are stored 

in a vector, warped and finally scaled. The algorithm does not 

account for subpixel accuracy and non-integer pixel positions are 

rounded towards zero. In this step we further account for the 

possibility that objects in the foreground can be warped over 

background elements. Precedence is given to foreground objects. 

 
In order to account for errors in the disparity maps that can arise 

due to inevitable rounding operations, the resulting estimates can 

be stabilized by taking the median of adjacent p disparity values 

with p set to 3 in our case.  

Finally, we obtain the pixel value in the center of that virtual 

camera by backward warping with the computed disparity. This 

forward and backward warping step is repeated for every camera 

position in the surrounding of this virtual camera delivering up to 

four disparity and pixel estimates. These estimates are averaged to 

get the final pixel and disparity value.  

The code shows the case when u and v are both positive (right-

upward warping) as shown in Figure 3. In other cases the sign of 

dx and dy has to be set according to the direction of l. Compared to 

alternate view synthesis algorithm, minimized the number floating 

point operations while still delivering a high image quality and at 

full resolution.  
 

4. EXPERIMENTAL RESULTS 
 

In an experiment we compared the image quality of our proposed 

method with a rendering similar to the one found in [9] and [11].  

As we didn’t have an option to capture ground truth disparity, we 

cannot provide a numerical comparison and need to stick to visual 

evaluation. In Figure 4 details from the different processing steps 

are presented. 

Render pixel: 

 % collect disparity values along l 

radius = dispMax · l 

 for r = 0 to radius 

  dx = cos(α)·r 

  dy = sin(α)·r 

  posX = floor(centerX + dx) 

  posY = floor(centerY + dy) 

  % assume (posX,posY) is a valid  

    image position 

  disp(r) = disparity(posX,posY) 

 end 

 

 % warp disparity vector 

 for r = 0 to radius 

  d = disp(r)  

  r’ = r - floor(d · baseline) 

  % Higher disparity overrides lower  

    disparity 

  if dispWarped(r’) <= d 

   dispWarped(r’) = d 

  end 

 end 

 

 % compute median disparity value over  

   2p+1 values and scale by baseline 

 d = median(dispWarped(-p:p)) · baseline 

 

 % backward warping of rgbImage 

 posX = floor(centerX – cos(α) · d) 

 posY = floor(centerY – sin(α) · d) 

 pixel = rgbImage(posX, posY) 

Pseudo code 1: Render a pixel in the target view at (centerX, 

centerY) by warping a disparity map 'disparity'. l denotes the 

warping distance and alpha denotes its angle. 
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Figure 4: Left: Input image from eCley camera with preprocessed single channel images. Center: Disparity map obtained with 

algorithm presented in [8]. Red marks areas with high disparity. Green areas have medium disparity and blue denotes low 

disparity. Right: Warped disparity map obtained with proposed algorithm. Some unreliable values are visible in the border 

channels. It is clear to see that the policeman is closer to the camera compared to the car.  
 

 

Figure 5: Patch based rendering from [8] and [11]. Artifacts 

due to invalid disparity values are visible on the car. The 

writing on the car shows some color artifacts.   

The left image shows the preprocessed input image acquired with 

the eCley. The single channels and the overlap between channels 

can clearly be distinguished. The center image shows the disparity 

map obtained with the algorithm presented in [8] and [11]. In this 

image red areas mark high disparity whereas green areas mark 

lower disparity. Blue areas show invalid disparity. The right image 

finally shows the rendered disparity map obtained with our 

proposed processing. 

The image in Figure 5 shows the result of the all-in-focus 

rendering algorithm proposed in [8] and [11]. The policeman in the 

foreground appears sharp without visible artifacts. In contrast, 

some artifacts are visible on the police car. As one can see in the 

center image of Figure 4, the disparity map contains errors in this 

area. Especially in homogenous areas we found that the block size 

used for disparity estimation in [8] is critical. Additional, the image 

shows some color artifacts around edges with high contrast. 

Figure 6 shows the result obtained with our proposed method. The 

objects in the foreground as well as in the background appear sharp 

with almost no artifacts. Some artifacts are visible above the 

policeman’s head and on the car. These are caused by small errors 

in the disparity maps that can also be seen in the right image in 

Figure 4. Color artifacts are clearly reduced.  

 

Figure 6: Proposed rendering method. Small artifacts exist 

above the policeman’s hat and on the car. Color artifacts at 

edges with high contrast are clearly reduced. 

5. CONCLUSION  

 

The processing chain presented in this paper proposes a series of 

steps that improve image quality for the eCley camera. The 

employed stereo disparity estimator provides horizontal and 

vertical estimates that are merged in a subsequent step to obtain 

dense and consistent disparity maps at full resolution. These 

estimates are finally used in the rendering to obtain an image at 

high resolution and small artifacts.  

Instead of a patch based rendering, the final image is rendered with 

an algorithm that accounts for the estimated depth for every pixel. 

The final image quality is compared at visual level. These images 

show on the one hand that our processing removes artifacts and 

increases image quality. On the other hand, one can see that our 

disparity maps still contain errors. However, only small artifacts 

are visible in the final image and implementation of an optimized 

rendering algorithm i.e. on a GPU is a reasonable task for future 

work. 

The overall image quality will further benefit by improving the 

underlying algorithms for disparity estimation and merging which 

is a task for future research.  
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