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ABSTRACT

The paper deals with encoding the contours of given regions in an

image. All contours are represented as a sequence of contour seg-

ments, each such segment being defined by an anchor (starting) point

and a string of contour edges, equivalent to a string of chain-code

symbols. We propose efficient ways for anchor points selection and

contour segments generation by analyzing contour crossing points

and imposing rules that help in minimizing the number of anchor

points and in obtaining chain-code contour sequences with skewed

symbol distribution. When possible, part of the anchor points are ef-

ficiently encoded relative to the currently available contour segments

at the decoder. The remaining anchor points are represented as ones

in a sparse binary matrix. Context tree coding is used for all entities

to be encoded. The results for depth map compression are similar

(in lossless case) or better (in lossy case) than the existing results.

Index Terms— Lossless and lossy compression, contour com-

pression, anchor points, depth map

1. INTRODUCTION

Depth compression has an important role in the multi-view compres-

sion for the 3D Television (3DTV) and Free Viewpoint Television

(FTV). In high quality view synthesis, the use of lossless compressed

images is important for eliminating the artifacts in depth map image

based rendering technologies.

In lossless compression several approaches were proposed: im-

age block splitting and Gray coding of bit planes for binary compres-

sion schemes [1], H264/AVC standard modification for depth maps

[2], palette images coder with good results for depth maps [3]. In

[4], the contour encoder uses a different contour segments generator

than the proposed method. The best performance is shown by [5],

where the contours are encoded using 2D contexts.

In lossy compression there are numerous approaches: triangu-

lar image decomposition by binary tree [6], quad-tree decomposi-

tion with a platelet based approach for region filling [7], two im-

age pyramid structures for arc breakpoints and sub-band samples

[8], a reduced image resolution and an up-sampling algorithm [9,

10]. Texture and color correlation is studied in [11], where a joint

depth/texture coding scheme is used, and in [12], where texture seg-

mentation is used for depth map segmentation. In [13], lossy ver-

sions of a depth map are created by either merging or splitting re-

gions, and are compressed lossless.

Our method uses the approach of finding in an image all maxi-

mal regions containing 4-connectivity pixels, and encoding the con-

tours and the depth value inside each region. The method is focusing

on encoding the contour using an efficient way for generating con-

tour segments, represented using their anchor points and chain-code

strings. Section 2 presents the rules for traversing the contour, and

the anchor point selection. Section 3 presents deterministic schemes

for chain-code symbols changing, and coding scheme for entities to

be encoded. Section 4 presents experimental results for lossy and

lossless compression. Section 5 draws the conclusions.

2. ANCHOR POINTS CODING (APC)

A depth map is a matrix I of size nr × nc, with the integer Ix,y
representing the depth for each pixel position (x, y). The proposed

method finds all connected regions Ωk of pixels with equal depth,

and encodes the contour and the depth value of each region. A region

Ωk containing connected pixels in 4-connectivity can be formally

defined as: for ∀(x, y) ∈ Ωk and ∀(xi, yi) ∈ {(x + 1, y), (x −
1, y), (x, y + 1), (x, y − 1)}, if Ix,y = Ixi,yi , then (xi, yi) ∈ Ωk.

The contour map is the union of all contour edges that form the

regions contours. One contour edge separates two neighboring pix-

els belonging to two different regions. The contour map is stored in

a graph having vertices placed in a (nr + 1) × (nc + 1) contour

grid, where the graph edges represent the contour edges. A vertex is

denoted by P = (i, j), where (i, j) are contour grid coordinates. If

in the image grid Ii,j 6= Ii,j+1, then in the contour grid a contour

edge is introduced between the vertices (i, j+1) and (i+1, j+1).
If Ii,j 6= Ii+1,j , then a contour edge is introduced between the ver-

tices (i+ 1, j) and (i+ 1, j + 1). Two vertices are adjacent if there

is a contour edge between them. A contour segment is ‘drawn’ as a

vector Γk = [P1 P2 · · · PnΓk
]T of nΓk

adjacent vertices.

The 3OT chain-code representation [14] codify each Γk by a

vector Sk = [s1 s2 · · · snΓk
−2]

T , where si is a 3OT sym-

bol that encodes: 0 for ‘go forward’, 1 for ‘change orientation’,

and 2 for ‘go back’. A symbol si encodes a current vertex Pi+2

relatively to the previous two vertices: Pi and Pi+1. Hence, P1

and P2 are needed in order to reconstruct Γk. The chain-code vec-

tors are concatenated for coding in a long vector of 3OT symbols

S = [ST
1 ST

2 · · · ST
nΓ

]T .
We call here anchor point the first vertex in each Γk. The coding

of the anchor points is our main focus. Our method offers solutions

to generate the set Γ = {Γk}
nΓ

k=1, which represents the entire con-

tour map, in such a way that we have a small number, nΓ, of contour

segments (since the anchor points are very expensive to code), and a

maximum number of symbols 0 and a minimum number of symbols

2 in S for an efficient coding of 3OT chain-codes.

A summary of the generating procedure for the set Γ and the

anchor points selection is as follows:

(a) Search column-wise (see Section 2.2) for the next anchor

point (i, j) (a vertex having unvisited adjacent vertices), and mark it

in the matrix of anchor points Υ(i, j) = 1 (see Section 2.3).

(b) Generate the contour segment Γk starting from the anchor

point, using the rules form Section 2.1, and ending in a vertex with
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Directive T1. When a P 3
k vertex is reached, the next vertex is

selected so that next encoded chain-code symbol is si 6= 0.

Directive T2. When P 3
k = (i, j) is reached if (i − 1, j) and

(i + 1, j) are unvisited adjacent vertices, then visit (i + 1, j)
(if (i, j − 1) and (i, j + 1) are unvisited, then visit (i, j + 1)).

Directive T3. When a P 4
k vertex is reached, the next vertex is

selected the one that generates a chain-code symbol 0.

Directive T4. When a Pk vertex with already three visited ad-

jacent vertices is reached, the remaining vertex, Pj , is adjacent

if a chain-code symbol 0 moves from Pk to Pj . If so, the de-

coder knows that Pk = P 4
k and go visit Pj (without encoding

the 0 chain-code), else Pk = P 3
k and Γk ends.

Directive C1. When Pk = (i, j) is reached, if the next adja-

cent vertex to visit is Pk+1 = (i− 1, j) or Pk+1 = (i, j − 1),
then Pk+1 is not an anchor point.

Directive C2. When Pk+1 is reached and Pk−1 = (i, j), if the

next adjacent vertex to visit is Pk+2 = (i − 1, j) or Pk+2 =
(i, j − 1), then Pk+1 is not an anchor point.

Fig. 1. The set of APC directives to be used when reaching a vertex

either in a Γk or as an anchor point. Directives T1-T4 are used for

generating contour segments by traversing from a vertex to one of

its selected unvisited adjacent vertex. Directives C1-C2 are used to

check if a vertex is not a possible anchor point position.

no unvisited adjacent vertices. While traversing Γk, check each ver-

tex if it is a possible anchor point (see Section 2.2), and save the

found presumptive anchor points at the end of the list Ψ of possible

relative anchor points (see Section 2.3). Mark with 2 in the matrix

Υ the remaining vertices in Γk (the anchor point is already marked).

(c) While there are still unprocessed positions ℓ in Ψ, if Ψ(ℓ) is

an anchor point, set the flag of being anchor point, Φ(ℓ) = 1, else

set Φ(ℓ) = 0. Treat any such anchor point as in (b).

(d) Continue with (a) until no more anchor points are found.

(e) Encode S, Φ and Υ, in this order.

2.1. Rules for traversing contour segments

A contour segment Γk is ‘drawn’ by the vertices saved when travers-

ing the contour, in the contour segments generation. Details about

the anchor points search are present in Section 2.2. The Directives T

(see Fig. 1) are used to choose the next adjacent vertex to visit, when

there are more options. In the contour graph, the following types of

vertices can be found:

(a) P 1
k has degree one, and is a contour graph boundary: P 1

k ∈
{(1, j), (nr + 1, j), (i, 1), (i, nc + 1)}. If the adjacent vertex was

visited, then the contour segment ends, else P 1
k is the anchor point

of a contour segment and the adjacent vertex is next to visit.

(b) P 2
k has degree two. If both adjacent vertices are unvisited,

the vertex is a double anchor point (case discussed in Section 2.3),

else Γk continues to the remaining unvisited adjacent vertex.

(c) P 3
k has degree three. When a P 3

k vertex is reached, it can

have: no unvisited adjacent vertices, one unvisited adjacent vertex

to visit (P 3
k is an anchor point), or two unvisited adjacent vertices.

For the last case, if one of the unvisited adjacent vertices is encoded

by si = 0, then Directive T1 is used to select the next adjacent ver-

tex to visit, else Directive T2 is used due to the constraint of search

Fig. 2. All possible ways of selecting the next adjacent vertex to visit

for a P 3
k vertex. An arrow shows the next vertex to visit as part of a

current Γk, a red (black) dot is a visited (unvisited) vertex, and a red

(black) line is a visited (unvisited) contour edge.

Fig. 3. Cases where a chain-code symbol 2 encodes Pk+2. An arrow

shows the next adjacent vertex to visit as part of a current Γk, a red

(black) dot is a visited (unvisited) vertex, and a red (black) line is a

visited (unvisited) contour edge.

for anchor points (see Section 2.3). In Fig. 2, all possible ways of

selecting an adjacent vertex for a P 3
k vertex are shown. The con-

sequences of using Directives T1 and T2 are: (i) a vertex encoded

using si ∈ {1, 2} is a possible anchor point for a contour segment;

(ii) a contour segment with an anchor point P1 = P 3
k has a known

P2 vertex; (iii) the cases shown in Figs. 2(a-d) are impossible.

(d) P 4
k has degree four, and is the crossing of two contour seg-

ments. The first time a P 4
k vertex is reached, Directive T3 is used to

decrease the number of anchor points. The second time a P 4
k vertex

is reached, si = 0 is used to visit the last adjacent vertex, and since

this case is deterministic for the decoder, si is not encoded. Direc-

tive T4 is used to differentiate a P 4
k vertex from a P 3

k vertex, since

Directive T1 was used for a P 3
k vertex.

2.2. Anchor points search

The paper uses the column-wise search for part of the anchor points,

since it guarantees that such a found anchor point P1 = (i, j) has

unvisited adjacent vertices (i, j + 1) and (i + 1, j). The remaining
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anchor points are found by checking the list Ψ of possible relative

anchor points. The list Ψ contains all the vertices encoded by a sym-

bol si 6= 0, for which Directives C (see Fig. 1) cannot be used.

Figs. 2(e-l) shows the reason why Directive T2 is used: the

second time P 3
k+1 = (i, j) is reached, the adjacent vertices (i, j+1)

and (i+1, j) are visited, and therefore P 3
k+1 is not an anchor point.

The cases from Figs. 2(f-k) are found using Directive C1. Figs.

2(m-p) shows the cases where P 3
k+1 is a possible anchor point, with

a known P2 position (see Section 2.1).

Fig. 3 shows the cases where a chain-code symbol sk = 2 is

generated. The vertex Pk+1 = (i, j) is not an anchor point in the

following cases: (i) in Figs. 3(a,c) the vertices (i, j+1) and (i+1, j)
are visited the first time Pk+1 is reached; (ii) in Fig. 3(b) Pk+1 may

only be the P 3
k+1 vertex from Fig. 2(b) (impossible case), or from

Fig. 2(h) (not an anchor point); (iii) in Fig. 3(g) Pk+1 may only be

the P 3
k+1 vertex from Fig. 2(c) (impossible case), or from Fig. 2(i)

(not an anchor point). These cases are found by Directive C2.

2.3. Anchor points classification

The information about the anchor points is stored in two arrays ini-

tially full of zeros: Υ, the matrix of anchor points of size nr × nc,

and Φ, the binary vector of flags selecting the relative anchor points

from the list Ψ. The anchor points are classified as:

(a) Edge anchor point, P1 = P 1
k , where P2 is determined as

follows: if P1 = (i, 1), then P2 = (i, 2); if P1 = (1, j), then

P2 = (2, j). These anchor points are stored by setting Υ(P 1
k ) = 1.

(b) Double anchor point, P1 = P 2
k = (i, j), has the vertices

(i, j + 1) and (i + 1, j) unvisited, and any of them can be selected

as P2. We first select P2 = (i, j + 1). If current Γk is not ‘closed’

(P1 6= PnΓk
), then a next contour segment has P1 = P 2

k and P2 =

(i+ 1, j). These anchor points are stored by setting Υ(P 2
k ) = 1.

(c) Relative anchor point, P1 = P 3
k , it is stored in Ψ at the cur-

rent index ℓ. If sk = 1 encodes the next vertex in Γk and Directive

C1 cannot be used (or if sk = 2 and Directive C2 cannot be used),

then: (i) if P 3
k+1 is a relative anchor point, set Φ(ℓ) = 1; (ii) in-

crement ℓ. These anchor points are found using the internal list Ψ
and are encoded by the vector Φ. Hence, any encoded vertex Pk is

signaled in Υ using the symbol 2 (‘ignore position’), if it was not

already marked (i.e. Υ(Pk) 6= 1.).
First two types are found by the column-wise search, and the last

type is found while traversing a contour segment.

3. DEPTH MAP COMPRESSION

The depth map I is compressed using the set Γ and the depth value

for each region. Section 2 showed that APC is coding the set Γ
using the arrays: S, Φ, and Υ. The entropy coding of each array is

described below, while the depth values are encoded (in about 10%
of the compressed file) using Algorithm Y from [5].

3.1. Chain-codes entropy coding

The vectors S is encoded using the Context Tree Algorithm [15,

16, 17], with a context tree T , built semi-adaptively, of maximum

tree-depth dT = 17. Before coding S, the following deterministic

changes are done (the decoder detects and reverses the changes):

(a) Reducing the number of symbols 2. When an anchor point

P1 = (is, js), encoded using Υ, is found, it guarantees that there

is no unvisited contour edge in the previous js − 1 columns and

is − 1 lines in column js of the contour graph. Hence, a vertex

Pk = (i, j) with i < is and j = js + 1 (or with i ≥ is and

(a) (b)

Fig. 4. (a) Reducing the number of symbols sk = 2. The blue

dots are vertices checked for anchor points, an arrow indicates the

next vertex to be visited, a red (black) dot is a visited (unvisited)

vertex, and the green dot is the anchor point. (b) The context used

for encoding the matrix Υ, where ‘x’ is the position to be encoded.

j = js) has maximum three unvisited adjacent vertices. When we

reach Pk = (i, j) and Pk−1 = (i, j + 1), then possible unvisited

adjacent vertices are Pk+1 = (i − 1, j) and Pk+1 = (i + 1, j). In

this case sk = 0 is not possible, and we remap the possible symbols

1 and 2 as shown in Fig. 4(a).

(b) Changing the context tree. The optimal ternary context

tree for S is unbalanced: subtree ‘0’ has many leaf nodes, while

subtree ‘2’ has a few leaf nodes. When studying the context tree

of a general 3OT chain-code vector, we notice that in the context

(sk−2 6= 2, sk−1 = 2) sk = 1 is more frequent then sk = 0, i.e.

the probability to encode a symbol 1 is higher than the probability to

encode a symbol 0. Hence, sk = 1 is changed into s′k = 0, and sk =
0 into s′k = 1. This introduces also some ‘branch interchanges’

between ‘0’ and ‘1’, but overall the change has a positive effect.

3.2. Coding the vector of relative anchor points

The vector Φ is encoded using the Context Tree algorithm with the

tree-depth dT = 17. The tests showed that Φ contains about 10%
symbols 1. Because the optimal context tree is unbalanced, i.e. it

has only one long branch (branch ’0’) with a few leaf nodes, the

threshold at which the symbol frequencies are halved in the arith-

metic coder was set to 511. Φ encodes 3.5÷ 4.9 bits/anchor point.

3.3. Coding the matrix of anchor points

Matrix Υ is encoded the last in column-wise scanning, using a bi-

dimensional context of length dT = 18, see Fig. 4(b). After prun-

ing, the optimal context tree has about 7 leaf nodes. The context

alphabet has three symbols, while the coding distribution has two

symbols (symbol 2 is ignored). At the decoder, if Υ(i, j) = 1 is

decoded, then the contour segment Γk with P1 = (i, j) is decoded

and Υ is updated.Υ encodes 9.9÷ 10.9 bits/anchor point.

4. EXPERIMENTAL RESULTS

Three datasets are used for simulations: the Breakdancers and Ballet

sequences [18], and the Middlebury dataset [19]. All the images are

compressed losslessly. The GSOm algorithm from [13] is used to

obtain lossy images for each selected image.
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Fig. 5. Lossless compression of depth map images.

Fig. 5 shows the results for lossless compression. APC is

compared with the state of the art methods: CERV [5] with two

versions CERV-HiCo and CERV-Fast, PWC [3], CALIC [20], and

LOCO-I [21] (the JPEG-LS implementation). One can see that APC

obtains good results comparing with all the methods, and almost

similar results with CERV-HiCo. To compare APC with the other

methods, a vector W is introduced. It computes a gain percentage

Wk = 1
100

(∑
i
Method(Ii)∑
i
APC(Ii)

− 1
)

for APC over a method for a

dataset, where APC(Ii) is the APC size of the compressed file, for

the image Ii from a dataset. W contains, in order, the values com-

puted for CERV-HiCo, CERV-Fast, and PWC: for Breakdances we

have W = [−0.46 3.94 8.95]T , i.e. CERV-HiCo has a mean

gain of 0.46%, while for example APC has a mean gain of 8.95%
over PWC; for Ballet we have W = [−0.59 3.62 8.80]T ; for

Middlebury W = [−1.06 0.96 7.07]T , while for Middlebury

only full-size resolution W = [0.13 2.01 6.60]T .

Fig. 6 shows the results for lossy compression1. For two images

from Middlebury, GSOm is used together with APC, CERV-HiCo

[5], PWC [3], and CCV [13] (combining [4] and [5]). The ”Pro-

1For results over the images used in [13] see www.cs.tut.fi/~schiopu/APC
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Fig. 6. Lossless compression of lossy images.

posed 80” algorithm from [8], denoted here P80, was also used as a

comparison method. APC obtains better results comparing with the

other methods, and even if the CERV compresses better than APC

the initial image, at about 65 dB APC starts to obtain better results.

5. CONCLUSIONS

The paper presented a contour coding method by generating sparse

arrays for encoding anchor points for chain-code strings. APC has

good results compared with other lossless or lossy methods. Com-

paring APC and CERV we draw the following conclusions:

(a) Similar results are obtained for lossless compression.

(b) For lossy compression, when GSOm is used together with

APC, the gains in PSNR, at certain bitrates, for the selected images,

are in the order of few dB when compared to GSOm+CERV.

(c) In terms of runtime, a comparison cannot be made since both

implementations are not optimized. APC has a smaller runtime then

CERV when encoding lossy images, since the number of contour

edges is smaller, and Φ tends to become sparser than in lossless case.

APC treats separately the information about anchor points and

contour segments, and can be modified for embedded coding.
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