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ABSTRACT

We propose to use color covariance matrices of superpixels
as a feature in addition to colors. A non-Euclidean distance
metric is employed for the covariance matrix manifolds. We
then introduce three ways of fusing the similarity matrices
obtained from both feature spaces for affinity graph genera-
tion. Experiments carried out using a benchmark dataset re-
veals that our approach achieves competitive and even better
results compared with the state of the art.

Index Terms— image segmentation, superpixel, covari-
ance matrices, bipartite graph

1. INTRODUCTION

Superpixels, i.e., clusters of image pixels grouped together
based on their perceptual similarity, are finding more and
more applications in image processing. A number of clus-
tering algorithms can be used to generate superpixels, e.g.,
density-based algorithms such as Mean Shift [1], and graph-
based methods such as FH [2] and Power watersheds [3].
Meanwhile, state-of-the-art implementations such as SLIC [4]
can form image superpixels very effectively as they are spe-
cially designed for the purpose. Region-based features can be
extracted from superpixels, which have found applications in
object classification and localization [5]. For image segmen-
tation, since superpixels are usually over-segmented, some
further treatment is necessary for larger but homogeneous re-
gions to be formed as the segmentation outcome [6]. Notably,
there is a growing trend in treating superpixels as cues to be
merged through spectral clustering [7][8]. More recently,
Wang et al. [9] applied a sparse-coding method to superpixels
in a `0 space, and by using a modified affinity matrix of the
Transfer Cut algorithm [7], achieved some impressive results.

In a wider context, it is found that the fusion of mul-
tiple cues can lead to better segmentation, e.g., combining
color histograms, local binary patterns feature, and Bag of
Words [10]. Apparently a suitable representation of superpix-
els may improve the quality of superpixel-based image seg-
mentation.

Following these former studies, in this paper we look
at improving superpixel feature representation by employ-
ing color covariance matrices in addition to superpixel color

features. Unlike conventional color or texture features, the
covariance matrices are not embedded in an Euclidean space
but define a manifold, so a Riemannian metric is adopted.
Using the same graph-cut approach as in [7], we then propose
several ways of fusing similarity measured in two difference
spaces, i.e., color and color covariance, when constructing
the affinity graph. These methods are then tested in the ex-
periments, and the final segmentation outcome is compared
with the state-of-the-art algorithms.

Fig.1 gives a quick comparison of our algorithm and
SAS [7]. Note that the tiger is split into different chunks by
SAS, but not by our method.

(a) (b) (c)

Fig. 1. Visual comparison of the best segmentation: (a) orig-
inal image; (b) SAS; (c) our method.

Next, Section 2 describes the feature extraction process,
followed by the construction of the affinity graph in Section 3.
Section 4 reports the experiment results. Finally, we conclude
the paper.

2. FEATURE EXTRACTION

Superpixels can be generated by using Mean Shift or FH al-
gorithms under different parametric settings. Our first focus
is on extracting useful features from the generated superpix-
els based on which image segmentation can be better carried
out.

Following previous work, first we use the average color
as the feature for each superpixel. In particular, the CIE Lab
color space is adopted because of its good approximation to
human vision. Denote a pixel vector in the Lab space as x.
Each superpixel, denoted as set Si = {x1,x2, · · · ,xM} (M
is the number of pixels included in Si), is then represented by
its average color vector

ci = E(xm),xm ∈ Si (1)
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The superpixels of an image are then regarded as a set of
points in a 3-D Lab space with an Euclidean distance met-
ric.

Empirically, using color information alone may not be
enough for generating perfect image segmentation. Other
non-Euclidean feature spaces could also be considered. In
particular, we are interested in using the color covariance
within superpixels, defined as

Σi = E((xm − ci)(xm − ci)
T ),xm ∈ Si (2)

Covariance matrices as a tensor lie on a smooth mani-
fold, hence requiring a non-Euclidean distance metric. Since
they are symmetric and positive semi-definite, we can use the
Förstner & Moonen metric [11] given as

d(ΣA,ΣB) =

√√√√ n∑
r=1

ln2 λr, (3)

where ΣA, ΣB are two covariance matrices of dimension n×
n, and λr(r = 1, · · · , n) are eigenvalues from the general-
ized eigenvalue problem |λΣA − ΣB | = 0. In our case, the
covariance matrices are of 3 × 3 dimension, so the cost of
eigenanalysis cost is negligible. Assume the average size of
superpixels is k pixels, the overall computational complexity
so far introduced for each superpixel hence is O(k).

3. GRAPH-BASED SEGMENTATION

3.1. Segmentation with superpixel-based graph cut

We use Transfer Cuts (Tcut) [7], a spectral graph-based par-
tition algorithm, to perform the image segmentation. First
a bipartite graph G(X,Y,B) is constructed over the pixels
and superpixel sets of the input image I . Here X denotes
the vertices with value of pixels and superpixels, Y denotes
the vertices representing superpixel sets created by different
or the same superpixel algorithms with different parameter
settings, and B = [WX ,WY ]T holds the edges of the bipar-
tite graph. Then, the cluster structure of the bipartite graph
G can be found by singular vector decomposition (SVD) of
the normalized across-affinity matrix B̂ = D

− 1
2

X BD
1
2

Y , where
DX = diag(B1),DY = diag(BT1).The left and right singu-
lar vectors of B̂ contain the partition information of vertices
in X and Y respectively.

The Tcut algorithm finds the partition of X more effi-
ciently by solving an equivalent eigen-problem [7]:

LY v = λDY v, (4)

where LY = DY − WY , WY = B̂TD−1
X B, and v is the

eigenvector.

3.2. Construction of the affinity graph

One major difference between our approach and other related
work is in the construction of the affinity graph . In [7], each
superpixel is connected with the nearest neighborhood among
its spatially adjacent superpixels, which fails to catch the re-
lationship of those vertices that are separated by spacial dis-
tance but close in the feature space. In [9], this weakness was
overcome by measuring the similarity of the superpixels with
their `0 sparse-coding representation. However, this problem
can be solved in another way. Our approach is to seek ad-
ditional information that better represents the superpixels, so
that the spatial constrains can be removed. This is achieved
by using the covariance matrices as the complementary fea-
ture to color features.

Let dij denotes the distance between superpixel Si and
Sj . Depending on the features being used, dij can be the
Euclidean distance in the Lab space, or the non-Euclidean
metric in (3). The similarity wij between the two superpixels
then is defined as follows:

wij =

{
e−βmin (dij ,dji) if i 6= j
1, otherwise

(5)

where β is a coefficient of the Gaussian-like kernel, and dij
is normalized into [0,1]. Note that dij may be unequal to dji
because of the normalization.

Now we have two different similarity matrices, W c and
WΣ, representing the two different feature spaces of the su-
perpixels, i.e., color and color covariance respectively. To
fuse these two similarity matrices so as to construct an affin-
ity graph, one solution is by means of the entry-wise product
(aka Hadamard product):

WHP = W c ◦WΣ. (6)

There are alternatives that can be adopted. de Sa [12] used
direct matrix product to similarity matrices from two views:

WDP = W cWΣ, (7)

In addition, Joachims [13] combined two individual modali-
ties by simply adding them together:

WAD = W c +WΣ, (8)

Finally, the affinity graph is built by connecting the pix-
els to their superpixels and pairing the superpixels that are
most similar to each other (within each over-segmented im-
age), i.e., building WX with the weight on each edge is set
to a constant, and forming WY with k-NN. Our algorithm is
summarized in Table 1.

4. EXPERIMENTS

For the purpose of comparison, the evaluation of our algo-
rithm is done on a standard benchmark image segmentation
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Table 1. Algorithm
Steps

1 Superpixel
generation

Use Mean Shift and FH algorithms
with different parameters to create
over segmentation of the image;

2 Feature
extraction

Compute the average color value of
the superpixels and their covariance
matrix by (2);

3 Similarity
measurement

Use (5) to compute the similarity of
superpixels, and fuse W c and WΣ

by (6), (7), or (8);
4 Graph con-

struction
Define a bipartite graph
G(X,Y,B) over pixels and
superpixels, and build the similarity
matrix B = [WX ,WY ]T ;

5 Segmentation Partition graph G with the Transfer
Cut algorithm.

dataset, the Berkley Segmentation Dataset (BSD) [14], and
the parameters are set the same as in [7] and [9]. Specifically,
the superpixels are created by Mean Shift and FH algorithms;
The weights on edges of WX are fixed to 1 × 10−3, and set
β = 20 for the distance-tuned Gaussian kernel in WY . We
use a nearest-neighbor graph for WY , with k = 1.

The evaluation is measured by four indicators: Proba-
bilistic Rand Index (PRI) [15], Variation of Information (VoI)
[16], Global Consistency Error (GCE) [17], and Boundary
Displacement Error (BDE) [18]. For PRI, a higher value
means better result; for the rest the lower the better. The aver-
age scores of the four indicators are reported for comparison.

The experiments are conducted in two parts. First, the
same as in [7], we manually set the number of segmentations
of every image to find the best performance of the algorithms
for comparison. Secondly, following [9], we fix the segment
number K = 2, which is more practical in real applications.
In both scenarios our method gives competitive performance.
We examine the performance of all three fusion methods in
our experiments, and the results are listed in Table 2 and Table
3. Our method ranks the first place with PRI and VoI when
the cluster number K is manually set, and when K is fixed to
2, it gets the best scores in PRI, VoI, and GCE. The scores of
the SAS algorithm and `0-sparse representation methods are
obtained from [7] and [9].

As shown in Table 3, the choice of the color space does
not seem to be critical, since the utilization of the color covari-
ance matrices seems to boost the performance significantly to
a competitive level even for RGB and HSV. SAS, on the other
hand, reports worse results in VoI and GCE when using these
two color spaces compared with using Lab.

The experiment results on the BSD dataset show that the
new superpixel feature extracted by a covariance matrix ap-
parently improves the average performance of the bipartite
graph based algorithm when combined with color cues. By

Table 2. Performance comparison over the BSD database
with K adjusted manually

Algorithms PRI VoI GCE BDE
SAS [7] 0.8319 1.6849 0.1779 11.2900
`0-sparse-coding [9] 0.8355 1.9935 0.2297 11.1955
Ours (using WHP) 0.8495 1.6260 0.1785 12.3034
Ours (using WDP) 0.8345 2.1169 0.2341 12.0008
Ours (using WAD) 0.8397 2.0359 0.2308 11.8868

Table 3. Performance comparison over the BSD database
with K fixed to 2

Algorithms PRI VoI GCE BDE
SAS [7] 0.6179 2.011 0.1106 42.2877
`0-sparse-coding [9] 0.6270 2.0299 0.1050 23.1298
Ours (using WHP) 0.6312 1.9350 0.0820 35.8760
Ours (using WDP) 0.5998 2.0336 0.0892 29.1803
Ours (using WAD) 0.6284 1.997 0.0940 24.6991
RBG (SAS) 0.6189 2.0224 0.1138 42.5141
HSV (SAS) 0.6182 2.0450 0.1203 42.0903
RBG (using WHP) 0.6289 1.9426 0.0815 33.9353
HSV (using WHP) 0.6317 1.9549 0.0838 30.2480

removing the spatial constraints, our method seems to han-
dle long-range homogeneity well, forming superpixels well
aligned with object contours. The Hadamard product seems
to performs the best among the three fusing schemes, but the
difference is mostly marginal.

Fig.2 shows more experimental results of our algorithm
when K is set to 2. The method seems to be quite effective in
foreground-background separation.

5. CONCLUSION

We present a graph-based segmentation approach that utilizes
color covariance matrices to boost the performance of graph-
based image segmentation. A non-Euclidean metric is em-
ployed for the covariance matrix space, and the new feature
is then integrated with color information to form the affinity
graph for segmentation. Our empirical results show that the
new approach produces better or competitive segmentation re-
sults compared with the state-of-the-art approaches. It is not
sensitive to the choice of color space, different from previous
work. In the future, we intend to incorporate some additional
features with our algorithm.
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Fig. 2. Some more results of our method (K = 2).
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perpixels compared to state-of-the-art superpixel meth-
ods,” TPAMI, vol. 34, no. 11, pp. 2274–2282, 2012.

[5] Brian Fulkerson, Andrea Vedaldi, and Stefano Soatto,
“Class segmentation and object localization with super-
pixel neighborhoods,” in ICCV’09, 2009, pp. 670–677.

[6] C. Panagiotakis, H. Papadakis, E. Grinias, N. Ko-
modakis, P. Fragopoulou, and G. Tziritas, “Interactive

image segmentation based on synthetic graph coordi-
nates,” Pattern Recognition, vol. 46, no. 11, pp. 2940–
2952, 2013.

[7] Zhenguo Li, Xiao-Ming Wu, and Shih-Fu Chang, “Seg-
mentation using superpixels: A bipartite graph partition-
ing approach,” in CVPR’12, 2012, pp. 789–796.

[8] Tae Hoon Kim, Kyoung Mu Lee, and Sang Uk Lee,
“Learning full pairwise affinities for spectral segmen-
tation,” in CVPR’10, 2010, pp. 2101–2108.

[9] Xiaofang Wang, Huibin Li, Charles-Edmond Bichot, Si-
mon Masnou, and Liming Chen, “A graph-cut approach
to image segmentation using an affinity graph based on
`0-sparse representation of features,” in ICIP’13, 2013.

[10] Bin Cheng, Guangcan Liu, Jingdong Wang, Zhongyang
Huang, and Shuicheng Yan, “Multi-task low-rank affin-
ity pursuit for image segmentation,” in ICCV’10, 2010,
pp. 2439–2446.

[11] Wolfgang Förstner and Boudewijn Moonen, “A metric
for covariance matrices,” in Geodesy - The Challenge
of the 3rd Millennium, ErikW. Grafarend, FriedrichW.
Krumm, and VolkerS. Schwarze, Eds., pp. 299–309.
Springer, 2003.

[12] Virginia R de Sa, “Spectral clustering with two views,”
in ICML workshop on learning with multiple views,
2005.

[13] Thorsten Joachims, “Transductive learning via spectral
graph partitioning,” in ICML’03, 2003, pp. 290–297.

[14] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and
Jitendra Malik, “Contour detection and hierarchical im-
age segmentation,” TPAMI, vol. 33, no. 5, pp. 898–916,
2011.

[15] Ranjith Unnikrishnan, Caroline Pantofaru, and Martial
Hebert, “Toward objective evaluation of image segmen-
tation algorithms,” TPAMI, vol. 29, no. 6, pp. 929–944,
2007.
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