
GLOBAL SCHEME FOR ITERATIVE MOJETTE RECONSTRUCTIONS

Benoit Recur1, Henri Der Sarkissian2,3, Myriam Servieres4

1Dept. Applied Math., RSPE, Australian National University, Australia
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ABSTRACT
In this paper, we develop a global iterative algorithm for to-
mographic reconstructions from Mojette projections. Since
Spline-Mojette projections are obtained by convolving Dirac-
Mojette values with a specific uniform projection kernel, we
decorrelate iterative reconstructions from projection model
and provide a global scheme available for all Mojette models.
We refer iterative algorithms to their Radon based counter-
parts and propose a comparative study from several Mojette
acquisitions.

Index Terms— Discrete geometry, Mojette transform,
Tomography, Iterative techniques.

1. INTRODUCTION

In the field of medical or industrial tomography, iterative al-
gorithms such that Simultaneous Algebraic Reconstruction
Technique (SART) [1, 2] or Ordered Subset Expectation Max-
imization (OSEM) [3, 4] are widely used to reconstruct a
volume from its projections. These methods are particularly
powerful to reconstruct from a few number of noisy projec-
tions, with high quality and accuracy compared to the direct
Filtered Backprojection (FBP) [5].

Apart from standard Radon based tomography [5], the
Mojette transform has been developed during the two last
decades as a discrete version the Radon transform. This
transform is exact in the sense that the acquired image can
be reconstructed exactly using Corner Based Inversion (CBI)
from noise-free projections [6]. This property has made the
Mojette transform very suitable in many application fields
such that encryption, watermarking, cloud computing and
distributed storage [7, 8, 9, 10].

More recently, several Radon-to-Mojette mappings have
been investigated. They allow one to reconstruct from real
tomographic data using Mojette theory with competitive qual-
ity results compared to standard algorithms [11, 12]. These
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new insights were particularly motivated by the fact that rigid
transforms (reorientations, upscalings) in Mojette space [13]
can be performed without interpolations. Then, contrary
to continuous based transforms, rigid transforms in Mojette
spaces consist of an exact and reversible processing which
does not degradate reoriented reconstructed volume quality.

However, apart from the exact CBI algorithm, only few
reconstruction methods have been proposed to recover an
image from noisy Mojette projections. We can denote for
example the Noise Robust CBI algorithm [14] or the FBP-
Mojette [15]. Even if few iterative algorithms have also been
proposed, such that SART-Mojette, they refer to a specific
iterative model, available for a specific Mojette acquisition,
and the litterature remains scattered [14].

Thus in this paper, we investigate the algebraic as well
as the Bayesian approaches in order to provide an iterative
scheme for Mojette reconstructions. After introducing Radon
based iterative theory (section 2), we detail Mojette transform
definitions (section 3). We develop Mojette based iterative
techniques in section 4, allowing us to define ART and EM al-
gorithms for Dirac-Mojette and Spline-Mojette [16] domains.
A comparison of images reconstructed from Mojette projec-
tions is finally discussed in section 5.

2. RADON BASED ITERATIVE TECHNIQUES

Usual tomographic devices are based on Radon’s theorem [5]
to reconstruct the volume of an object from a projection set
acquired from the exterior of the object. The Radon transform
R describes the projection line acquisition. It maps a function
f(x, y) into its projections along angles θ and positions ρ as
follows :

Rθ(ρ) =

∫∫ ∞
−∞

f(x, y)δ(ρ− x cos θ − y sin θ)dxdy (1)

where θ and ρ are respectively the angular and radial coor-
dinates of the projection line (θ, ρ) and δ(·) is the Dirac im-
pulse. As an illustration, the Shepp-Logan phantom [17] and
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its Radon transform (called sinogram) performed using 180
angles uniformly distributed between 0 and π, with 512 sam-
ples per projection are depicted Fig. 1.

(a) (b)

Fig. 1. (a) Shepp-Logan phantom represented in an image
sized 512 × 512. (b) Acquired 180 projections sinogram of
512 samples.

Tomographic reconstruction consists of inverting the
Radon transform, ie. recovering f(x, y) from a given pro-
jection set R. A wide kind of algorithms such as FBP or
iterative techniques are now well established to compute such
an image from its projections [1, 2, 3].

2.1. Simultaneous Algebraic Reconstruction Technique

The simultaneous algebraic reconstruction technique [1, 2]
(SART) approaches the solution of the linear equation sys-
tem I = A−1R, where I is the image, R is the sinogram
and A is a pixel-to-projection weight-matrix, using an itera-
tive processing following k ∈ [0 · · ·Niter[, whereNiter is the
number of iterations. Each sub-iteration s, 0 ≤ s < Nθ, up-
dates each pixel of the image Ik,s by comparing the measured
projection Rθs with Rkθs (computed from Ik,s−1) as follows :

Ik,s(i, j) = Ik,s−1(i, j) +

Nρ−1∑
ρ=0

A(θ,ρ),(i,j)

[
Rθs (ρ)−Rkθs (ρ)

Dθs (ρ)

]
Nρ−1∑
ρ=0

A(θ,ρ),(i,j)

(2)
where Nθ is the projection number, Nρ is the sample number
on each projection, Dθ(ρ) =

∑W−1
i=0

∑H−1
j=0 A(θ,ρ),(i,j) cor-

responds to the norm of segment (θ, ρ) crossing the image,
Rkθs(ρ) is computed from image at previous iteration using
Eq. (1) and (W ×H) is the image size. A super-iteration k is
completed when all the projections have been used. Iterations
in k are performed until the convergence of the solution.

2.2. Expectation Maximization Techniques

Expectation Maximization [3, 4] relies on a wide range of
iterative algorithms based on Bayesian theory. An update step
of the algorithm is performed as follows :

I(i, j)k+1 = I(i, j)k

Nθ−1∑
θ=0

Nρ−1∑
ρ=0

A(θ,ρ),(i,j)
Rθ(ρ)

Rkθ (ρ)

U(i, j) +

Nθ−1∑
θ=0

Nρ−1∑
ρ=0

A(θ,ρ),(i,j)

(3)

where U(i, j) is a regularization term taking into account the
neighborhood behaviour of updated pixel as defined in [18,
19, 20].

2.3. Iterative Algorithm scheme

Globally, an iterative algorithm (cf. Fig. 2) consists of iterat-
ing the following steps : 1) select a projection or a set s of
projection angles ; 2) compute corresponding forward projec-
tions from the image at previous iteration ; 3) compute the
projection errors by an additive or multiplicative comparison
between each measured and computed projection ; 4) update
the image by retroprojecting the errors and taking into ac-
count regularizations (backprojection).

Fig. 2. Global iterative reconstruction algorithm.

Iterative algorithms are powerful to deal with deblurring
from detector response function. Indeed, an acquisition de-
tector response can be modeled as a convolution filter applied
on the forward projection. It consists of redefining the overall
acquisition function Eq. (1) with f ′(x, y) = M(x, y)?f(x, y)
or R′θ(ρ) = Mp(ρ) ? Rθ(ρ), where M(x, y) (resp. Mp(ρ))
denotes an image (resp. a projection) filter and ? is the con-
volution operator. Thus such an algorithm corrects for ac-
quisition defects using direct response model in forward pro-
cess, avoiding deconvolutions (inverse model) needed when
one uses analytic reconstruction (FBP).

3. MOJETTE TRANSFORM

The Dirac-Mojette transform [6, 16] is a discrete version of
the Radon transform using angles defined by tan θ = q

p such
that (p, q) ∈ Z2 are co-prime and correspond to the number of
pixel displacement horizontally and vertically. A projection
value (called a bin) Mp,q(b) on a projection (p, q) is the sum
of pixels centered on the line b = pj − qi :

Mp,q(b) =

W−1∑
i=0

H−1∑
j=0

I(i, j)∆(b− pj + qi) (4)

where I is a 2D orthonormal support lattice sizedW×H and
I(i, j) is the pixel value. (p, q)-projection size is Nρ(p, q) =
(W − 1)|q|+ (H − 1)|p|+ 1.

The Spline-Mojette transform extends the Dirac-Mojette
transform to consider each bin as a weighted sum of pix-
els along a discrete line [16]. This model is closer to the
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Fig. 3. Dirac-Mojette projections (−2, 1), (1, 1) and (1, 0)
computed from a 3 × 3 pixel image : each pixel is projected
exactly in one bin of each projection. Spline-Mojette (−2, 1)-
projection values are also provided : all pixels are uniformly
projected into several bins according to the Spline kernel of
the discrete projection.

continuous beam propagation [11] encountered in Radon ac-
quisitions. Spline-Mojette bins MS

p,q(b) can be computed
by applying the Spline kernel Sp,q(x) as a convolution filter
on Dirac-Mojette bins or by a direct image acquisition using
Sp,q(x) as pixel-weight function :

MS
p,q(b) =

W−1∑
i=0

H−1∑
j=0

I(i, j)Sp,q(b− pj + qi)

=
∑

b′∈(p,q)

Mp,q(b)Sp,q(b− b′)

(5)

where :

Sp,q(x) =


1 if 2x ≤ ||p| − |q||
−2x + |p|+ |q|
2 min{|p|, |q|} if ||p| − |q|| < 2x < |p|+ |q|

0 elsewhere

(6)

An example of Dirac-Mojette and Spline-Mojette projections
acquired from a 3× 3 pixel image is given on Fig. 3.

4. ITERATIVE MOJETTE RECONSTRUCTIONS

4.1. Algebraic Mojette Reconstruction
Eq. (2) can be written as follows to obtain a Dirac-Mojette
algebraic update step :

Ik,s(i, j) = Ik,s−1(i, j)+

∑
b∈(p,q)

∆(x)


Mp,q(b)−Mk,s

p,q (b)

W−1∑
i′=0

H−1∑
j′=0

∆(b− j′p+ i′q)


∑

b∈(p,q)
∆(x)

(7)
where x = b− pj + qi. Since Dirac pulse implies ∆(x) = 1
when b = pj − qi and 0 otherwise, Eq. (7) is simplified by :

Ik,s(i, j) = Ik,s−1(i, j) +

[
Mp,q(b)−Mk,s

p,q (b)

||bp,q||

]
(8)

where b = pj − qi, Mp,q(b) is the original Mojette acquisi-
tion, Mk,s

p,q (b) is computed from image Ik,s−1 using Eq. (4)

and ||bp,q|| =
W−1∑
i=0

H−1∑
j=0

∆(b−pj+qi) is the number of pixels

crossed by bin b on projection (p, q).
This simplication can not be done with Spline-Mojette

projections since several values of Sp,q(b) differ from 0 :

Ik,s(i, j) = Ik,s−1(i, j) +

∑
b∈(p,q)

Sp,q(x)

[
MS
p,q(b)−M

S,k,s
p,q (b)

||bSp,q ||

]
∑

b∈(p,q)
Sp,q(x)

(9)
where MS

p,q(b) is the original Spline-Mojette acquisition,
MS,k,s
p,q (b) is computed from image Ik,s−1 using Eq. (5) and

||bSp,q|| =
W−1∑
i′=0

H−1∑
j′=0

Sp,q(b− j′p+ i′q) is the discrete distance

crossed by bin b in the image.
Spline kernel S is uniform when it is applied as a pixel-

weight during acquisition or as a convolution filter on Dirac-
Mojette bins. Then, as explained in section 2.3, it can be
viewed as a blurring effect to correct for during the itera-
tions. In that case, forward and back-projections remain Dirac
based, resulting to the following update step :

Ik,s(i, j) = Ik,s−1(i, j) +

[
MS
p,q(b)−Mk,s

p,q (b) ? S

||bp,q||

]
(10)

4.2. Expectation Maximization Mojette

Similar approach can be followed to obtain a Mojette Expecta-
tion-Maximization. Let PS be a subset of projections in P
and ||PS || be the number of projections in PS , a Spline-
Mojette version of Eq. (3) (considering simplifications made
above) can be :

Ik,s(i, j) = Ik,s−1(i, j)

∑
(p,q)∈PS

[
MS
p,q(b)

Mk,s
p,q (b) ? S

]
||PS ||

(11)

where the regularization term in Eq. (3) is ignored. PS = P
relies on EM [3] whereas PS 6= P leads to OSEM [4].

4.3. Global Iterative Mojette Algorithm

The overall scheme of an iterative reconstruction from Mo-
jette projections remains the same than on Fig. 2. However
one can remark that computations are simplified due to the
uniform one-to-one mapping between pixels and bins. This
property allows to consider the Spline-kernel S (and any other
uniform pixel-to-projection weighting functions) as a convo-
lution filter to correct for instead of a specific Mojette forward
and backward modelling. It results that iterative Mojette re-
constructions are projection-kernel invariant.
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(a)
MSE: 16223

(b)
MSE: 277

(c)
MSE: 331

(d)
MSE: 495

(e)

MSE: 549
(f)

MSE: 329
(g)

MSE: 395
(h)

MSE: 1454
(i)

MSE: 693
(j)

Fig. 4. (a) Original 256× 256 image. (b) Incomplete CBI reconstruction F6 projection set. Reconstructions using 5 iterations
and 4 sub-sets obtained by : (c) SART-Mojette from Mojette bins ; (d) SART-Mojette from Spline-Mojettes bins ; (e) OSEM-
Mojette from Mojette bins ; (f) OSEM-Mojette from Spline-Mojette bins. OSEM-Mojette reconstructions from Spline-Mojette
bins using : (g) 5 iterations and (h) 10 iterations with projection by projection update ; (i) 10 iterations and 1 subset.

5. RECONSTRUCTION EXAMPLES

The original image is a 256 × 256 view of the well-known
Lenna image (cf. Fig. 4(a)). This image is acquired using the
projection set F6 given by the Farey-Haros series of order 6
and symmetries [21]. This projection set contains 48 projec-
tions, which is not enough to obtain a complete reconstruction
using CBI from noise-free projections (cf. Fig. 4(b)). Recon-
structions from Dirac-Mojette and Spline-Mojette bins using
Algebraic and EM methods are given in Fig. 4(c-f). We have
used 4 subsets of 12 projections and 5 iterations. MSE re-
sults are obtained by comparing reconstructed images with
the original. They highlight better quality results from Dirac
projections whatever the reconstruction.

As a comparison, SART reconstruction on Fig. 4(g) is
obtained by update step Eq. (9) whereas SART reconstruc-
tion on Fig. 4(d) was obtained by Eq. (10). Similarity be-
tween both results confirm that Spline kernel can be con-
sidered as a blurring filter to correct for instead of a spe-
cific forward/backward model. Finally, image Fig. 4(h) (resp.
Fig. 4(i)) is obtained by OSEM-Mojette using 5 (resp. 10)
iterations and a projection-by-projection update. Fig. 4(j) is
obtained by 10 iterations with 1 subset. These results confirm
that convergence speed and divergence depend both on the it-
eration and ordered-subset numbers ; which relies on similar
well-known results of usual tomography.

6. CONCLUSION

Iterative techniques, based on algebraic or Bayesian theory,
are widely used in standard tomography. We have demon-
strated in this paper that they can be adapted to the Mojette
transform. Moreover, their overall computation is simplified
by the uniform mapping between pixels and bins. Indeed, uni-
form weight coefficients in the forward projection (such that
Spline-Mojette) can be viewed as a blurring convolution filter
to correct for from Dirac-Mojette bins. This property allows
to define a global scheme where forward and back-projections
are always based on Dirac modelling. Thus scheme is used to
provide any algebraic or stochastic algorithm, whatever the
kind of measured Mojette projections.

However in that study, we have neglected the regulariza-
tion term used to add an a priori on the reconstructed image.
Such regularisation often consists of penalizing pixel update
according to the behaviour of pixel neighborhood. In Mojette
geometry, neighborhood definition is quite different since ac-
quisition is composed of pixels which are not adjacent. Then
our future works will focus on the investigation of regulariza-
tion terms for Mojette iterative reconstructions, taking into ac-
count the specific properties of such discrete neighborhoods.
They will be used for reconstructing images from Radon-to-
Mojette interpolated projections [11, 12].
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