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ABSTRACT

Full reference video quality estimators (QEs) either resize
the input video or the reference video to compute the quality
when these videos have different spatial resolutions. This re-
sizing operation causes several limitations. Multiscale Image
Quality Estimator (MIQE) [1] overcomes those limitations for
images but it does not consider the temporal characteristics of
video. In this work, we develop a video quality estimator that
integrates MIQE with the motion information to estimate the
quality. We also perform subjective tests to compare the pro-
posed algorithm with the existing QEs. Test results show that
the proposed algorithm outperforms other QEs.

Index Terms— video quality estimation, human visual
system, motion, spatial resolution, subjective tests

1. INTRODUCTION

Multimedia communications have become ubiquitous as a re-
sult of progress in consumer products and social media abili-
ties. Since the demand is increasing exponentially, the avail-
able wireless communication infrastructure may not be suf-
ficient to provide a satisfactory service in the future. There-
fore, we should develop methods to employ the resources ef-
ficiently. One of these methods is using perceptual coding
approaches to minimize the required bitrate without causing
any noticeable artifact. To achieve this, the quality of the vi-
sual content must be estimated with high accuracy.

Quality estimators (QEs) are used to measure the per-
ceived quality of the visual content. QE approaches are eval-
uated in three categories. They are: Full-Reference (FR) QE,
Reduced-Reference (RR) QE and No-Reference (NR) QE. To
decide the type of the QE and design it accurately, we must
take into account the requirements of the environment [2].
The display resolution of the end user is one of these im-
portant requirements if the network consists of devices with
various spatial resolution constraints.

To date, FR video QEs have been designed to estimate
quality when the reference and input videos have the same
spatial resolutions. There are two straightforward methods
to adapt these QEs to estimate the quality when the displayed

frame has a different spatial resolution. The first method com-
pares the low-resolution input video with the decimated ref-
erence video. The second method compares the interpolated
input video with the reference video. Throughout this paper,
we call these methods QEdown and QEup, respectively.

QEdown and QEup have significant drawbacks [3]. The
first drawback occurs because of interpolating the test or dec-
imating the reference video to estimate the quality. These
operations can cause over or under estimation of the input
video’s quality in QEdown and QEup setups, respectively. The
second drawback arises due to potential mismatch between
filters which are used in creating the input video and com-
puting the quality. Lastly, ignoring the effect of viewing dis-
tance to the quality is the third drawback. More details about
these drawbacks and how they affect the quality computation
can be found in [1]. While computing the video quality we
should also consider the effect of motion to the quality and its
influence on the aforementioned drawbacks.

The effect of spatial resolution on the quality has been ex-
amined in several works. In [4] and [5], the authors perform
subjective tests to examine the subjective impact of jointly
adjusting spatial resolution, temporal resolution, and quan-
tization step-size. Cermak et al. [6] used the mean opin-
ion scores (MOSs) obtained for QIF(176× 144), CIF(352×
288), VGA(640 × 480), and HD(1920 × 1200) resolutions
at many bit rates. Cranley et al. [7] perform subjective tests
using several combinations of resolution and quantization pa-
rameters to find the optimum parameter pairs. These studies
provide valuable information to understand the effect of spa-
tial resolution, but they do not provide an objective metric
model that is used to quantify this effect. In [1], we propose
Multiscale Image Quality Estimator (MIQE) to calculate the
quality when the input and reference images have different
resolutions. It handles the limitations of QEdown and QEup

approaches. However, using MIQE without considering the
effect of motion will not provide an accurate video QE for
videos with different spatial resolutions.

In this work, we propose a video quality estimator for
input videos with different resolutions from the reference
videos. It is designed to overcome the drawbacks of QEdown

and QEup. It extends [1] to consider the video and in par-
ticular the effect of motion to the sensitivity of the human
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vision system (HVS). We also develop a subjective test envi-
ronment to ensure whether the proposed algorithm works and
compare it with other video QEs. In Section 2, we describe
the proposed quality estimator. In Section 3, we explain our
subjective test environment and analyze the subjective test
results. In Section 4, we conclude the paper.

2. MULTISCALE VIDEO QUALITY ESTIMATOR

The design of the proposed video quality estimator is based
on MIQE [1] to handle the limitations of QEdown and QEup.
However, it also takes into account the temporal characteris-
tics of the video to the perceived quality. Hence, we develop
the Multiscale Video Quality Estimator (MVQE) by incorpo-
rating the effect of motion information into the MIQE. We
describe how we integrate motion into MIQE in detail in the
following two subsections. First, we explain how the contrast
sensitivity of HVS changes according to the spatial and tem-
poral frequencies. Next, we use the spatiotemporal effects of
HVS to construct our video QE.

2.1. The Spatiotemporal Effect of HVS on Video Quality

To design a video QE which takes into account the effect of
motion and the viewing distance, we should employ the spa-
tiotemporal contrast sensitivity function (STCSF) in the QE.
STCSF shows the thresholds of HVS at different spatial and
temporal frequency pairs to detect the changes in a visual con-
tent. We need proper frequency units to represent and com-
pute the STCSF appropriately.

We use the angular frequency to represent spatial fre-
quency components of two video frames that are viewed with
different resolutions and/or different distances. The angular
frequency is computed as follows [8]:

f(l) =
π ∗ d ∗ n

180 ∗ h ∗ 2 ∗ 2l
(1)

In this expression, f(l) denotes the angular (spatial) fre-
quency in cycles per degree (cyc/deg); d, h, and n represent
the distance of the viewer, height of the screen, and the num-
ber of pixels in the vertical direction, respectively. Lastly, l
indicates the level of a subband decomposition. The temporal
frequency is obtained by multiplying the magnitude of the
velocity with the spatial frequency [9]. We use Daly’s model
[10] to calculate the frequency response of STCSF as follows:

STCSF (f, vR) = k.c0.c2.vR.(c1.2.π.f)
2.exp(−c1.4.π.f

fmax
)

k = s1 + s2.| log(
c2.vR
3

)|3

fmax =
f1

c2.vR + 2
(2)

where s1 = 6, s2 = 7.3, f1 = 45.9, c0 = 1.14, c1 = 0.67
and c2 = 1.92. In this equation, f is the spatial frequency in

cyc/deg and it is computed as in Eq. (1). The retinal velocity
is denoted by vR and measured in deg/sec. We compute vR
using the following equation:

vR = vT − vE (3)

In this expression, vT is the velocity of the target object in
deg/sec. It depends on the frame rate of the video and spatial
frequency. It is computed as follows:

vT (f) = m.FR/f (4)

where, m is the estimated motion of the target object, FR is
the frame rate of the video and f is the spatial frequency. On
the other hand, vE denotes the velocity of the eye. Daly’s
model takes into account the movement of the eye, and com-
putes vE as follows:

vE = min[(gsp.vT ) + vMIN , vMAX ] (5)

where, gsp = 0.82, vMIN = 0.15 deg/sec, and vMAX = 80
deg/sec. Using Eqs. (2)-(5), we can find the sensitivity of
each spatial frequency and velocity pair.

While computing the quality of videos that have differ-
ent resolutions, we should also take into account the effect
of resizing on the computation of the spatial frequency of the
visual content. As seen in Eq. (1), increasing the viewing dis-
tance or decimating by 2 doubles the spatial frequency of the
visual content. Since temporal frequency depends on the mo-
tion and spatial frequency, resizing or distance change also
indirectly affects the temporal frequency. In addition to the
usage of the correct spatial resolution, accurate motion pre-
diction is also necessary to find the sensitivity with high preci-
sion. To compute the STCSF value accurately, we need to use
the methods which take into account the motion in different
spatial frequency bands. We have selected the Hierarchical
Block-Based Motion Estimation using wavelets (HBME).

HBME uses the correlation between the blocks in the
consecutive two frames of the video. The first one is called
the anchor frame and the second one is called the target
frame. These two frames are decomposed into subbands us-
ing wavelet-based transforms. The motion is estimated for
each subband using block-based ME. It is also assumed that
there is a correlation in motion among subbands. Hence, the
motion information which is found in the lower level is used
as a starting point in the next level. The estimation starts with
the lowest subband level and proceeds as follows.

First of all, the subband of the target frame and anchor
frames are divided into non-overlapping 4×4 blocks. Second,
a destination block is picked from the target frame’s subband.
This block is called the destination block. Third, a search
range is defined in the anchor frame’s subband for the cor-
responding block. The center of this range collocates with
the center of the destination block. Fourth, all the candidate
blocks within the search are compared with the destination
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block. The comparison is performed using the mean abso-
lute difference (l1 norm). The index of the block which has
the minimum difference determines the motion vector for the
chosen destination block. These operations are repeated un-
til all the motion vectors are computed. After motion vectors
of all blocks are found in the lowest subband level, they are
scaled and used as starting locations for the motion estimation
in the upper layers.

2.2. Quality Calculation

In this section, we describe how we compute quality using
MVQE. The first steps are identical to MIQE [1]: convert
pixel values to physical luminance, compute a wavelet de-
composition on reference and input videos, and represent
blocks from the input in terms of the reference using a Gaus-
sian Mixture Model. Next, we construct the QE by appro-
priately weighting the mutual information of each subband
block. The calculation of mutual information for each sub-
band block is similar to what we did for images in [1] but
the the weights of subband blocks are computed differently.
In MIQE, weighting coefficients only depend on the subband
level. Therefore, all subband blocks in the same subband
will have the same weights. On the other hand, in MVQE,
the weight of each subband block is computed separately,
because the sensitivity function depends on the motion and
the motion may vary according to the position of the subband
block in the video frame.

To calculate the magnitude of weighting coefficients, we
take into account two factors. First, the effect of subband
size should be compensated by scaling the mutual informa-
tion of each subband block with 22l. Second, HVS has a dif-
ferent weight for each subband block. As expressed in Eq.
(2), STCSF depends on the motion and the spatial frequency.
Since the motion information is local and it can be different
for different spatial frequencies, the value of the contrast sen-
sitivity can change for each block. Hence, the scaling coeffi-
cient of each subband block is computed using the following
expression:

Gl,o,j = STCSF (l, o, j) ∗ 22l (6)

where l and o, denote the subband level and the subband ori-
entation, respectively. The term j stands for the block index
at the subband (l, o). The value of the estimated video quality
is found by scaling the similarity of each subband block with
the corresponding weight. It is computed as follows:

MVQE =

∑
l,o,j ∈ subband blocksGl,o,j ∗ II,l,o,j∑
l,o,j ∈ subband blocksGl,o,j ∗ IR,l,o,j

(7)

II,l,o,j and IR,l,o,j represent the mutual information values
of the input and the reference signals for the subband block
(l, o, j), as calculated in [1]. The final quality value is between
0 and 1, and increases as the quality improves. To check the

validity of the proposed algorithm, it is necessary to compare
the estimated quality values with the viewers’ opinion scores.

3. SUBJECTIVE TESTS

We performed subjective tests to obtain the viewers’ mean
opinion scores using videos that have different spatial reso-
lutions. The test results are used to ensure that the proposed
algorithm works properly. They also provide a benchmark to
compare our algorithm with existing approaches. In the fol-
lowing subsections, we describe how we create the test set,
perform subjective tests, and analyze results.

3.1. Test Set Creation

We use in total 4 reference videos with different spatial
and temporal complexities. They are chosen from a public
database in [11] where the original sources are referenced.
The name of the videos are Soccer, Mobcal, Tree and Park.
Mobcal, Tree and Park have a 1280 × 720 spatial resolution;
their frame rate is 50 fps. On the other hand, the spatial reso-
lution of Soccer is 704× 576 and its frame rate is 60 fps. The
videos have different spatial and temporal characteristics.

We have created 9 test videos have been created for each
reference video. Out of these 9 test videos, 5 are high-
resolution and are created by compressing a reference video.
The remaining 4 videos are low-resolution test videos. These
videos are obtained by decimating the reference video at
a rate of 0.5 and compressing the decimated video. We
compress the full-size reference video and the decimated ref-
erence video using H.264 AVC codec. JM 18.1 [12] reference
software is used to implement H.264 AVC codec. We employ
the Non-Normative Filter as a low pass filter during decima-
tion. It is a Sine-windowed Sinc-function and is formulated
in [13].

Quantization levels for the test videos should cover a
range from excellent quality to very bad quality. Moreover,
we should also observe the effect of bitrate on the quality
of high and low resolution test videos at different quality
regions. To fulfill these two requirements, QP values of the
low resolution test videos are determined according to the QP
values of the high resolution test videos. We use the following
notations to describe the relationships between the bitrate and
the quantization values of high-resolution and low-resolution
test videos. HR and LR denote high-resolution and low-
resolution test videos, respectively. The quantization level
index is denoted by i. Hence, QPHR

i represents the QP value
of high-resolution video at the ith index, and BRHR

i denotes
the bitrate of this video. The QP value increases (quality
decreases) as i increases.

Based on this notation, we choose the bitrates of the test
video as follows. First of all, we assume that QPHR

1 = 28
and QPLR

1 = 28 for all reference video types. If i is even
(i ∈ 2, 4), then BRHR

i will be found by averaging BRHR
i−1
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Table 1. Mean Opinion Scores and 95 % CIs
H1 L1 H2 L2 H3 L3 H4 L4 H5

Mobcal 88.9 ± 2.4 74.2 ± 4.9 83.5 ± 3.2 70.4 ± 4.6 63.7 ± 5.1 48.2 ± 5.3 43.0 ± 7.0 30.8 ± 6.4 31.7 ± 7.6
Soccer 90.5 ± 3.1 73.8 ± 6.3 86.7 ± 3.0 64.2 ± 6.6 70.7 ± 4.4 53.0 ± 8.1 58.2 ± 6.1 42.5 ± 6.6 36.9 ± 6.4

Tree 88.8 ± 2.6 71.7 ± 5.1 82.4 ± 3.5 62.0 ± 5.9 60.8 ± 6.4 42.7 ± 7.3 42.7 ± 7.9 28.8 ± 6.7 20.8 ± 6.7
Park 89.1 ± 2.7 72.8 ± 5.1 85.0 ± 3.3 66.2 ± 6.3 65.2 ± 5.6 43.0 ± 7.0 48.6 ± 7.3 27.6 ± 7.5 24.6 ± 7.8

and BRLR
i−1. QPHR

i and QPLR
i are equal to the QP value

of the high-resolution test video which has the closest bitrate
to the BRHR

i . On the other hand, if i is odd (i ∈ 3, 5), we
set BRHR

i to BRLR
i−2 and the QP value which satisfies this

requirement is assigned to QPHR
i .

To have reliable quality estimates without compromising
the accuracy of ranking, the viewers should be able to play-
back the videos anytime during the test. The method that we
use to achieve this goal is the Subjective Assessment Method-
ology for Video Quality (SAMVIQ) [14]. This method allows
the viewer to select and watch the videos as many times as
they want using the index of the video. Viewer can also up-
date the scores based on other videos. During these updates,
the viewer implicitly ranks the videos.

3.2. Subjective Test Implementation

The test contained a total of 40 videos, and 25 people joined
the tests. Each test session took approximately 40 minutes.
The viewers were either graduate or undergraduate students.
They had clear vision and they were non-experts. The test ses-
sion consisted of 4 groups. In each group, a reference video
and its corresponding test videos were displayed to the view-
ers. There were 4 low resolution and 5 high resolution test
videos for each group. The reference video could be selected
by pressing 0. However, the indices of the test videos changed
randomly for each test session and each test group to prevent
bias. The order of test groups was also random.

We asked the viewers to give a score between 0 and 100
for each test video. The score of the reference video was 100.
The range between 0 and 100 was divided into 5 parts as de-
scribed in Double Stimulus Impairment Scale : Bad (0-20),
Poor (21-40), Fair (41-60), Good (61-80), Excellent (81-100).
We informed the viewers about the meaning of each range
before the test. Each video took 10 seconds. Viewers could
enter the scores before or after 10 seconds. The distance be-
tween the viewers and the screen was 6 times the height of the
640× 360 image.

3.3. Analysis of Subjective Test Results

In this subsection, we compare the performance of our pro-
posed video QE to 4 approaches using the results of the sub-
jective test. We begin by evaluating the statistical character-
istics of the subjective test. Then, we examine the similarity
between subjective test scores and QE scores using QEdown

setup.

Table 2. Correlation Metric Scores of QEs
Pearson SRCC KRCC FCR FCS

PSNR 0.811 0.836 0.648 0.788 0.561
VQM 0.930 0.927 0.756 0.850 0.680

MOVIE 0.882 0.938 0.803 0.875 0.696
MIQE 0.940 0.952 0.819 0.925 0.784

MVQE 0.969 0.973 0.883 0.975 0.876

To assess the reliability of subjective test scores, we
compute the 95% confidence interval (CI) of subjective test
scores. According to these computations, when the QP level
is high the variance of the MOS is also high. MOSs and CI
values of each test video is given in Table 1.

Next, we calculate the similarity between MOSs and QEs
using the following popular correlation metrics: Pearson,
Spearman Rank Correlation Coefficient (SRCC), and Kendall
Rank Correlation Coefficient (KRCC). These computations
provide both the ranking and the scoring similarity. We also
compute the Fraction of Correct Ranking (FCR) and Fraction
of Correct Similarity (FCS) [1] metrics. Pearson, SRCC and
KRCC consider the relationship between all test video scores,
but FCR and FCS only examine the relationship between HR
and LR test videos. We useQEdown setup to compute the QE
values. During QEdown, we used the Non-Normative filter
as the decimation filter. Compared QE methods are Video
Quality Metric (VQM) [15], Motion-based Video Integrity
Evaluation (MOVIE) [16], MIQE [1], and PSNR.

Table 2 shows the correlation scores between QEs and
MOSs for all videos. According to the table, the PSNR
has the lowest performance. MVQE performs better than
other QEs. MIQE’s correlation scores are less than those
of MVQEs. Hence, integrating motion information has
improved the QE estimation. FCR and FCS scores of the
proposed approach is also higher than others.

4. CONCLUSIONS

Computing the quality of a video with lower spatial resolution
compared to the reference video is a challenging task. In this
paper, we have proposed an algorithm to solve this problem.
We have developed this algorithm by incorporating the effect
of motion to the our previously proposed method for images,
i.e. MIQE. We have also performed subjective tests to mea-
sure the performance of the proposed approach. According
to the test results, the proposed algorithm outperforms other
QEs.
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