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ABSTRACT

Arithmetic coding is employed in image and video coding schemes

to reduce the statistical redundancy of symbols emitted by coding

engines. Most arithmetic coders proposed in the literature generate

variable-length codes, i.e., they produce one long codeword of vari-

able size. This requires renormalization operations to control the

internal registers of the coder and the propagation of carry bits. This

paper introduces an arithmetic coder that generates fixed-length

codewords. The main advantage of the proposed coder is that it

avoids renormalization procedures, which reduces computational

complexity. Also, it uses a variable-size sliding window mechanism

to estimate with high precision the probability of the emitted sym-

bols. Experimental results indicate that the proposed coder achieves

coding efficiency superior to those coders employed in JPEG2000

and HEVC while having lower computational costs. When inte-

grated in a JPEG2000 implementation, the proposed coder achieves

coding gains between 0.5 to 1 dB at medium and high rates, and

speedups between 1.1 to 1.3 in the bitplane coding stage.

Index Terms— Arithmetic coding, context-adaptive models.

1. INTRODUCTION

Entropy coding is an indispensable tool in image and video coding

to reduce the statistical redundancy of the symbols produced by cod-

ing engines. Currently, the most popular entropy coding technique

is arithmetic coding. Briefly described, the arithmetic coder begins

by segmenting the interval of real numbers [0, 1) in as many subin-

tervals as symbols has the alphabet. The size of the subintervals is

chosen according to the probability mass function (pmf) of the sym-

bols. The first symbol of the message is coded by selecting its cor-

responding subinterval. Then, this procedure is repeated within the

selected subintervals for the following symbols of the message. The

transmission of any number within the final subinterval guarantees

that the reverse procedure decodes the original message losslessly.

In image and video coding schemes, the arithmetic coder is

employed to code every symbol emitted. The reduction of its com-

putational complexity has always been an issue of concern. The

first ideas to do so aimed at multiplication-free implementations

that perform the subinterval division using bit shifts and adds. The

shift coder [1] and the CKW coder [2] are representatives of such

ideas. Subsequently, most works approached the subinterval division

by means of lookup tables (LUTs). The quasi-arithmetic coder [3],

the ELS coder [4], the Z coder [5], and the Q coder [6] belong to this

type of implementations. Descendants of the Q coder, namely, the

QM coder [7] and the MQ coder [8] were introduced in the JPEG,

JBIG2, and JPEG2000 standards. Standards of video coding such as

H.264/AVC and HEVC employ variants of the M coder [9], which

was introduced in the 2000s employing a reduced range of possible
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subinterval sizes together with LUTs. Enhancements to the M coder

to improve its context-adaptive mechanisms and to reduce its com-

putational load have been proposed in [10, 11] and in [12, 13],

respectively. More recently, the PIPE coder [14] suggests the re-

placement of arithmetic coding by a technique of probability interval

partitioning to further reduce complexity. Also, architectures to de-

crease the power consumption [15, 16], to allow parallel threads of

execution [17], or to accelerate the execution pipeline [18, 19] have

been proposed to minimize the computational costs of arithmetic

coding.

A common characteristic of all arithmetic coders mentioned

above is that they produce variable-to-variable length codes. This is,

a variable number of input symbols are coded with a codeword of a

priori unknown length. In terms of implementation, this requires a

renormalization procedure to reposition internal registers, and con-

ditionals to control the propagation of carry bits. These operations

are needed to produce a single and, commonly, long codeword. They

can be avoided if, instead of producing a long codeword of variable

length, the coder produces short codewords of fixed length.

Fixed-length arithmetic codes are not new. First approaches

were proposed in the nineties [20, 21] with the aim to address some

of the disadvantages of conventional arithmetic coding such as poor

recovery to channel errors, or lack of random access and partial de-

coding. Variable-to-fixed length arithmetic coding has also been

used in [22, 23] to limit error propagation, and in [24] to compress

machine instructions. In the context of image coding, only [25] em-

ploys arithmetic coding with codewords of fixed-length, though its

application is limited to bilevel images only.

The goal of this work is to explore the use of arithmetic cod-

ing with fixed-length codewords in modern image codecs. Our ob-

jective is to replace the MQ coder of JPEG2000 with a coder that

provides same features as those of the MQ while increasing its com-

putational throughput and coding efficiency. The proposed coder

uses codewords of fixed length and a variable-size sliding window

mechanism to adjust the probability estimates of the symbols. Ex-

perimental results indicate coding performance gains between 0.5 to

1 dB at medium and high rates, and speedups in the JPEG2000 bit-

plane coding stage between 1.1 to 1.15. When the proposed coder is

employed together with a recently introduced stationary probability

model, the speedup raises to 1.3.

The paper is organized as follows. Section 2 describes the pro-

posed coder and Section 3 assesses its coding performance and com-

putational throughput with experimental results. The last section

concludes with some remarks and outlines lines of future research.

2. ARITHMETIC CODING WITH FIXED-LENGTH

CODEWORDS

The main idea behind arithmetic coding with fixed-length codewords

(FLW) is to use a codeword of W bits. The subinterval division is

carried out into the codeword until it is exhausted, which happens

when the size of the subinterval is 0. Then, the subinterval stored in
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the codeword is dispatched and the codeword is reset. Algorithm 1

details the proposed method. The subinterval division is carried out

in lines 12 and 15-17. The subinterval is stored in the integer regis-

ters L and S, which are the left boundary and the size minus 1 of the

subinterval, respectively. The coding of a 0 reduces the subinterval

size according to the context’s probability estimate. The coding of a

1 increases the left boundary and reduces the subinterval size. When

S = 0 (line 20 in Algorithm 1), the codeword is exhausted and L
and S are reset after dispatching the subinterval that they contain.

The subinterval division is carried out through an integer mul-

tiplication and a bit shift to the right, which is denoted by≫. The

context’s probability estimate, accessed via P[c], is an integer in the

range P[c] ∈ [0, 2P̂ − 1]. The context of the symbol coded is pro-

vided by the coding engine and is referred to as c. P̂ is the number

of bits employed to represent the probability. The division of the

subinterval is implemented as (S · P[c]) ≫ P̂ in lines 12 and 15.

This is faster than using floating point arithmetic or an integer divi-

sion. This operation should not exceed the size of the registers of

the processor, so W + P̂ ≤ 64. In our implementation P̂ = 15,

whereas W ranges from 8 to 48 (see below).

Lines 1-10 and 13, 19 embody the mechanism to estimate the

probabilities of the symbols coded with each context. The main idea

is that the probability estimate is updated every Û symbols are coded

with the corresponding context. The probability estimate is com-

puted employing a window that contains between Ŵ to 2Ŵ symbols

except in the beginning of the coding process. Such a variable-size

sliding window reduces computational costs and enhances coding

efficiency. This is in accordance with other probability models for

bitplane image coding [26, 27, 28] and has been implemented in dif-

ferent forms in the literature [29, 30, 13]. The proposed mechanism

employs two counters per context, referred to as T and Z . They are

implemented as arrays accessed via c. T [c] and Z[c] count the num-

ber of symbols, and the number of 0s, coded for context c since the

last time that the window was updated, respectively. The conditional

in line 1 checks whether Û symbols are coded for context c. Û is of

the form Û = 2U − 1, so that a bit-wise AND operation, denoted

by &, is employed to check whether so many symbols have been

coded. The conditional in line 3 checks whether Ŵ symbols have

been coded for that context. If so, subtracts Ŵ from T [c], and Z ′[c]
from Z[c]. Z ′[c] keeps the number of 0s coded since the last time

that the window of symbols was updated. This is carried out every

time Ŵ symbols are coded with context c except for the first Ŵ sym-

bols. As seen in Algorithm 1, Ŵ is also of the form Ŵ = 2U
′

− 1.

Obviously, Û ≤ Ŵ . For the coding of images with JPEG2000, we

found that Û = 7 and Ŵ = 127 achieve competitive coding effi-

ciency, so they are employed in the experiments of Section 3 except

when indicated.

The MQ coder of JPEG2000 utilizes a bit-stuffing mechanism

to simplify the resolution of carry bits. A carry bit is produced

due to the intrinsic operations performed during subinterval division

in conventional arithmetic coding. Without the bit-stuffing mecha-

nism, a carry bit may propagate to already dispatched bytes. The

MQ coder stuffs a 0 bit just after dispatching a FFh byte, ensuring

that carry bits in the current registers can not propagate into previous

bytes. This also causes that bytes following a FFh are always in the

range 00h to 8Fh, which is employed in JPEG2000 to assign mark-

ers that can be unequivocally identified in the codestream. The same

bit-stuffing procedure as that of the MQ coder is implemented in

the “dispatchSubinterval(·)” function of Algorithm 1. The proposed

coder does not require this bit-stuffing procedure since there are no

Algorithm 1 FLW encode (x bit to encode, c context)

Initialization: L← 0, S ← 2W − 1

1: if T [c] & Û = Û then

2: P[c]← (Z[c] / T [c]) · 2P̂

3: if T [c] & Ŵ = Ŵ then

4: if Z ′[c] 6= 0 then

5: Z[c]← Z[c]−Z ′[c]

6: T [c]← T [c]− Ŵ
7: end if

8: Z ′[c]← Z[c]
9: end if

10: end if

11: if x = 0 then

12: S ← (S · P[c])≫ P̂
13: Z[c]← Z[c] + 1
14: else

15: k ←
(
(S · P[c])≫ P̂

)
+ 1

16: L← L+ k
17: S ← S − k
18: end if

19: T [c]← T [c] + 1
20: if S = 0 then

21: dispatchSubinterval(L)

22: L← 0
23: S ← 2W − 1
24: end if

carry bits to control. Nonetheless, it is included so that the markers

in the JPEG2000 codestream can still be unequivocally identified.

Also, comparisons of coding efficiency between MQ and FLW can

disregard this aspect as the cause behind their differences.

The decoder has a structure similar to that of the encoder. Al-

gorithm 2 details its procedure. In this algorithm, I is the subinter-

val stored in the codeword. The probability estimation (lines 1-10

and 25,27) is the same as that of the encoder. The main difference

with the encoder is that the decoder needs to compute the left bound-

ary and the size of the new subinterval (lines 16, 17) for every sym-

bol decoded. The encoder computes the left boundary of the new

subinterval only when a 1 bit is encoded. This increases slightly the

computational complexity of the decoder.

Algorithms 1 and 2 provide an idea of the structure of the

FLW coder. In practice, however, the conditionals dictate the opera-

tions that are actually carried out to encode each symbol. To provide

a precise evaluation of its computational complexity, Table 1 re-

ports the average number of operations per symbol coded carried

out by the MQ coder1 and the proposed FLW coder when encod-

ing and decoding an image. The FLW coder employs codewords

of 48 bits in this test (labeled as “FLW-48”), though other lengths

do not change results significantly. The results also take into ac-

count the operations required to dispatch bytes and to initialize and

terminate the codeword (not shown in the algorithms). The opera-

tions are classified depending on their type. Assignments, accesses

to LUTs/arrays, and conditionals are, in general, computationally

simpler than the remaining types shown in the table, which are

arithmetic-like operations. The number of computationally simple

operations performed by the proposed coder is significantly lower

than that of the MQ coder, whereas the number of computationally

1The MQ coder employed is that described in [8, Ch. 17.1], which mini-
mizes the number of operations executed.
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Algorithm 2 FLW decode (c context)

Initialization: L← 0, S ← 0, C ← 0

1: if T [c] & Û = Û then

2: P[c]← (Z[c] / T [c]) · 2P̂

3: if T [c] & Ŵ = Ŵ then

4: if Z ′[c] 6= 0 then

5: Z[c]← Z[c]−Z ′[c]

6: T [c]← T [c]− Ŵ
7: end if

8: Z ′[c]← Z[c]
9: end if

10: end if

11: if S = 0 then

12: I ← getSubinterval()

13: L← 0
14: S ← 2W − 1
15: end if

16: k ←
(
(S · P[c])≫ P̂

)
+ 1

17: l← L+ k
18: if I ≥ l then

19: x← 1
20: L← l
21: S ← S − k
22: else

23: x← 0
24: S ← k − 1
25: Z[c]← Z[c] + 1
26: end if

27: T [c]← T [c] + 1
28: return x

complex operations is higher (see the rows labeled “TOTAL a+b+c”

and “TOTAL d+e+f+g” in the table). This is due to the proposed

implementation carries out, at least, one multiplication every time

a symbol is coded (line 12 or 15 in Algorithm 1 and line 16 in

Algorithm 2). This multiplication may be removed through the

use of LUTs, similarly as how it is done in [3, 4, 5, 6, 7, 8]. In

our implementation, the attempts to do so have always decreased

the computational throughput. This may be caused because the

access to several memory positions and the addition of assignments

increases the computational load more than to carry out one multi-

plication that can be rapidly processed in the processor pipeline. The

division carried out to compute the probability estimates (line 2 in

both algorithms) increases negligibly the computational complexity

of the coder because it is not performed every time a symbol is

coded. See in Table 1 that this operation increases in only 0.1 the

number of multiplications/divisions performed per symbol coded.

The total number of operations carried out by the proposed coder is

approximately 15% less than those required by the MQ coder.

3. EXPERIMENTAL RESULTS

Rather than employing real data, the first experimental test assesses

coding efficiency and computational throughput when coding arti-

ficially generated symbols. This appraises the performance of the

coder without intervention of the other mechanisms of the coding

engine. The symbols are generated assuming that they are indepen-

dent and identically distributed. A generalized Gaussian distribution

(GGD) with parameters σ = 0.2, µ = 0.75 and support in the range

(0, 1) is employed to generate the symbols’ probability. The GGD

Table 1: Evaluation of the average number of operations per symbol

coded carried out by the MQ and the FLW-48 coder when coding

with JPEG2000 (lossy mode and 64×64 codeblocks) the “Cafeteria”

image of the ISO12640-1 corpus.

ENCODER DECODER

operation type MQ FLW-48 MQ FLW-48

a) assignment 7.6 4.4 9.8 6.1

b) LUT/array access 5 3.3 5 3.3

c) conditional 5.4 4.8 5.6 5.1

d) bit-wise 1.9 2.5 5.2 2.6

e) increment/decrement 0.9 2.1 0.9 3.4

f) add/subtract 1.7 1.3 2.2 1.9

g) multiplication/division - 1.1 - 1.1

TOTAL a+b+c 18 12.5 20.4 14.5

TOTAL d+e+f+g 4.5 7 8.3 9

TOTAL a+b+c+d+e+f+g 22.5 19.5 28.7 23.5
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Fig. 1: Evaluation of the coding efficiency when coding artificially

generated symbols.

serves to simulate the real probabilities of symbols generated by im-

age codecs, which are commonly centered about a central value (pa-

rameter µ in the GGD). Other parameters achieve similar results.

The sequences employed in the tests have 5 · 105 and 108 symbols

to appraise coding efficiency and computational throughput, respec-

tively. Tests of throughput employ sequences with more symbols to

measure computational time with more precision. All coders evalu-

ated are programmed in Java. All tests are performed with an Intel

Core i7-3770 CPU at 3.40 GHz employing a Java Virtual Machine

v1.7 and GNU/Linux v3.5.

Fig. 1 evaluates the coding efficiency achieved by the JPEG2000

arithmetic coder (labeled “MQ”) and the FLW coder when using

different codeword lengths. For comparison purposes, the arithmetic

coder of the HEVC standard (labeled “M”), and the entropy of the

source are also included in this figure. All coders use 8 contexts to

adapt the probabilities of the symbols. The probability of a symbol

is always in the range (0, 1). This range is divided into eight uniform

intervals, and each one is assigned to one context. A context codes

all symbols whose probabilities fall within its interval. The vertical

axis of the figure is the coding rate, expressed in bits per sample

(bps), whereas the horizontal axis is the codeword length, expressed

in bits. Results indicate that the longer the codeword employed by

FLW, the lower the coding rate. Compared to the MQ and M coder,

FLW achieves higher efficiency for codewords of 20 bits or longer.

Fig. 2 reports the computational time spent to encode and to de-

code the sequence of artificially generated symbols. The longer the

codeword, the lower the computational time spent by the FLW coder,

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20145603
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Results are reported as the difference between FLW and MQ.

with codewords of 32 and 48 bits achieving the lowest times. This is

caused because the use of long codewords calls the dispatching pro-

cedure less frequently than when using short codewords. Compared

to the MQ and M coder, the proposed coder is between 10% to 25%

faster depending on the codeword length.

The following experimental tests employ the images of the

ISO12640-1 corpus. The images are grayscale, 8 bps, and of size

2560×2048. The codeword length employed by FLW is 48. The

experiments evaluate the coding efficiency and the computational

throughput achieved by a JPEG2000 codec when it employs the con-

ventional MQ coder and the proposed FLW coder. JPEG2000 coding

parameters are: lossy mode, 64×64 codeblocks, no precincts, and

single quality layer codestreams. Our JPEG2000 implementation

BOI [31] is employed to carry out these experiments. Evidently,

only the codec that employs the MQ coder produces a compliant

codestream, though the FLW coder produces a codestream with a

syntax that does not undermine any feature of the standard.

Fig. 3 evaluates the coding efficiency achieved when coding the

eight images of the corpus. Results are reported as the quality differ-

ence, in peak signal to noise ratio (PSNR), between FLW and MQ

when coding each image at 50 rates uniformly distributed between

0.01 to 5 bps. The straight horizontal line in the figures is the per-

formance achieved by the JPEG2000 implementation that uses the

MQ coder. Plots above this line indicate that FLW achieves higher

PSNR than that. Results for each image are depicted with a different

color. The results indicate that the FLW coder improves the cod-

ing efficiency achieved by MQ significantly. Only for the “Bicycle”

image coded at low rates, the MQ coder achieves slightly superior

efficiency. At medium and high rates, FLW improves coding effi-

ciency from 0.5 to almost 1 dB.

The evaluation of the computational throughput considers the

speedup achieved in the tier-1 coding stage of a conventional

JPEG2000 codec. The tier-1 coding stage implements the bitplane

coding engine and the entropy coder and spends 60∼70% of the
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Fig. 4: Evaluation of the computational throughput achieved by

FLW when using the context-adaptive mechanisms (blue columns)

and a stationary model of probabilities (green columns). (a) reports

results for the encoder and (b) for the decoder.

total coding time. The blue columns of Fig. 4(a) and (b) report the

speedup achieved by FLW with respect to MQ, respectively for the

encoder and the decoder. These results indicate that the FLW coder

achieves speedups between 1.1 to 1.2 for the encoder and between

1.05 to 1.1 for the decoder.

All experimental results above employ context-adaptive mecha-

nisms to estimate the symbols’ probability. As seen in Algorithms 1

and 2, these mechanisms moderately consume computational re-

sources. Recently, a model of probabilities that avoids the use of

adaptive mechanisms to determine the probabilities of the symbols

coded in each context has been introduced [28]. Its main idea is that

the probability of the symbols can be estimated depending on the

bitplane and the context in which they are emitted. Similar ideas

are also employed in [32]. The green columns of Fig. 4 report the

speedup achieved when the proposed coder is combined with the sta-

tionary probability model described in [28]. The use of such a prob-

ability model improves the throughput of the proposed coder more.

Speedups of approximately 1.3 and 1.2 are respectively achieved for

the encoder and the decoder. We note that such speedups are signif-

icant in the context of bitplane image coding [27].

4. CONCLUSIONS

This paper introduces an arithmetic coder that uses fixed-length

codewords (FLW). Contrarily to most coders in the literature, the

proposed coder does not require renormalization procedures to

control internal registers and carry bits. This simplifies its imple-

mentation, reducing computational complexity. Also, the proposed

coder employs a new variable-size sliding window mechanism to

estimate with high precision the probability of symbols emitted.

FLW is introduced in the framework of JPEG2000. Experimental

results indicate coding gains over the conventional MQ coder be-

tween 0.5 to 1 dB. In terms of computational throughput, the FLW

coder accelerates the bitplane coding stage between 10% to 30%.
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