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ABSTRACT

In this paper, we employ Single-hidden Layer Feedforward
Neural networks in order to perform human action recog-
nition based on multiple action representations. In order to
determine both optimized network and action representation
combination weights, we propose an optimization process
that jointly minimizes the overall network training error and
the within-class variance of the training data in the corre-
sponding hidden layer spaces. The proposed approach has
been evaluated by using the state-of-the-art Bag of Features-
based action video representation on three publicly available
action recognition databases, where it outperforms two com-
monly used video representation combination approaches, as
well as the best single-descriptor classification outcome.

Index Terms— Single-hidden Layer Feedforward Neural
networks, Multi-view Learning, Human Action Recognition,
Bag of Features

1. INTRODUCTION

Human action recognition is intensively studied nowadays
due to its importance in many real-life applications, like in-
telligent visual surveillance, human-computer interaction and
video games, to name a few. Perhaps the most well studied
and successful approach for action representation is based on
the Bag of Visual Features (BoF) model. According to this
model, sets of shape and/or motion descriptors are evaluated
on spatiotemporal locations of interest of a video and multi-
ple (one for each descriptor type) video representations are
obtained by applying vector quantization. The descriptors
that provide the current state-of-the-art performance in most
action recognition databases are: the Histogram of Oriented
Gradients (HOG), the Histogram of Optical Flow (HOF) and
the Motion Boundary Histogram (MBH). These descriptors
are evaluated on the trajectories of densely sampled video
frame interest points, which are tracked for a number of con-
secutive video frames. Tracking can be performed in various
ways [1, 2, 3]. The normalized location of the tracked interest
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points is also employed in order to form another descrip-
tor type, referred to as Trajectory [4]. An advantage of this
approach is that no human silhouette extraction is needed
[5, 6].

Since different descriptor types express different prop-
erties of interest for actions, it is not surprising the fact
that a combined action representation exploiting all the above
mentioned (single-descriptor based) video representations en-
hances action classification performance [4]. Such combined
action representations are usually obtained by employing un-
supervised combination schemes, like the use of concatenated
representations (either on the descriptor, or on the video rep-
resentation level), or by combining the outcomes of classifiers
trained on different representation types, e.g., by using the
mean classifier outcome in the case of SLFN networks [7, 8].
However, the adoption of such combination approaches may
decrease the generalization ability of the adopted classifica-
tion schemes, since all the available action representations
equally contribute to the classification result.

Extreme Learning Machine (ELM) [9] is a relatively new
algorithm for fast Single-hidden Layer Feedforward Neural
(SLFN) networks training, requiring low human supervision.
Conventional SLFN training algorithms require adjustment
of the network weights and the bias values, using a param-
eter optimization approach, like gradient descent. However,
gradient descent learning techniques are, generally, slow and
may lead to local minima. In ELM, the input weights and
the hidden layer bias values are randomly chosen, while the
network output weights are analytically calculated. ELM not
only tends to reach a small training error, but also a small
norm of output weights, indicating good generalization per-
formance [10]. ELM has been successfully applied to many
classification problems, including human action recognition
[11, 12, 13, 14, 15, 16].

In this paper we employ the ELM algorithm in order to
perform human action recognition from videos. We adopt
the state-of-the-art BoF-based action representation [4], in or-
der to represent videos depicting actions, called action videos
hereafter. In order to enhance the performance of the ELM
network and properly combine the information provided by
different descriptor types, we extend the ELM algorithm in or-
der to incorporate multiple video representations in the corre-
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sponding ELM spaces and jointly minimize their within-class
variance and the overall network training error for network
output weights optimization.

The remainder of the paper is structured as follows. In
Section 2, we briefly describe the ELM algorithm. The pro-
posed optimization scheme is described in Section 3. Exper-
imental results evaluating its performance are illustrated in
Section 4. Finally, conclusions are drawn in Section 5.

2. EXTREME LEARNING MACHINE

ELM has been proposed for single-view classification [9]. Let
xi and ci, i = 1, ..., N be a set of the labeled action vectors
(e.g., BoF-based action video representations) and the corre-
sponding action class labels, respectively. For a classification
problem involving the D-dimensional action vectors xi, each
belonging to one of the C action classes, the network should
consist of D input, H hidden and C output neurons. The net-
work target vectors ti = [ti1, ..., tiC ]

T , each corresponding
to one labeled action vector xi, are set to tij = 1 for vectors
belonging to action class j, i.e., when ci = j, and to tij = −1
otherwise.

In ELM, the network input weights Win ∈ RD×H and
the hidden layer bias values b ∈ RH are randomly chosen,
while the output weights Wout ∈ RH×C are analytically
calculated. Let vj denote the j-th column of Win, uk the
k-th row of Wout and ukj be the j-th element of uk. For
a given hidden layer activation function Φ(·) and by using a
linear activation function for the output neurons, the output
oi = [o1, . . . , oC ]

T of the ELM network corresponding to
training action vector si is given by:

oik =

H∑
j=1

ukj Φ(vj , bj ,xi), k = 1, ..., C. (1)

By storing the hidden layer neuron outputs ϕi ∈ RH in a
matrix Φ = [ϕ1, . . . ,ϕN ], equation (1) can be written in a
matrix form as O = WT

outΦ. Finally, by assuming that the
predicted network outputs O are equal to the desired ones,
i.e., oi = ti, i = 1, ..., N , Wout can be analytically calcu-
lated by solving for WT

outΦ = T, where T = [t1, . . . , tN ] is
a matrix containing the network target vectors. The network
output weights are, thus, given by Wout =

(
ΦΦT

)−1
ΦTT .

The original ELM algorithm described above assumes
zero training error. An extension allowing small training
errors and incorporating the within-class variance of the
training data in the ELM space has been proposed in [14],
where the network output weights are obtained, according to
a regularization paramter c > 0, by:

Wout =

(
ΦΦT +

1

c
Sw

)−1

ΦTT . (2)

Sw is the within class scatter matrix evaluated on ϕi.

After calculating the network output weights Wout, a test
action vector xt can be introduced to the trained network and
be classified to the action class corresponding to the maximal
network output, i.e. ct = arg max

j
otj , j = 1, ..., C.

The above described ELM algorithms can be employed
for single-view (i.e., single-representation) action classifica-
tion. In the next section, we describe an optimization process
that can be used for multi-view action classification, i.e., in
the cases where each action video is represented by multiple
action vectors xv

i , v = 1, . . . , V .

3. PROPOSED OPTIMIZATION SCHEME

Let us assume that the N training action videos are repre-
sented by the corresponding action vectors xv

i ∈ RDv , i =
1, . . . , N, v = 1, . . . , V . We would like to employ them, in
order to train V SLFN networks, each operating on one view
(descriptor type). To this end we map the action vectors of
each view v to one ELM space RHv , by using randomly cho-
sen input weights Wv

in ∈ RDv×Hv and input layer bias val-
ues bv ∈ RHv . Hv is the dimensionality of the ELM space
related to view v and may vary between views.

In order to determine both the networks output weights
Wv

out ∈ RHv×C and appropriate descriptor type combination
weights α ∈ RV we can formulate the following optimization
problem:

Minimize: J =
1

2

V∑
v=1

∥Sv 1
2

w Wv
out∥2F +

c

2

N∑
i=1

∥ξi∥22 (3)

s.t.:

(
V∑

v=1

αvW
v T
outϕ

v
i

)
− ti = ξi, i = 1, ..., N,(4)

∥α∥22 = 1, (5)

where ϕv
i ∈ RHv is the representation of xv

i in the corre-
sponding ELM space and Sv

w is the within-class scatter ma-
trix of the training data evaluated on ϕv

i . ξi ∈ RC is the error
vector related to the i-th action video and c is a regularization
parameter expressing the importance of the training error in
the optimization process. By using Φv = [ϕv

1, . . . ,ϕ
v
N ], the

network responses corresponding to the entire training set are
given by O =

∑V
v=1 αvW

v T
outΦ

v .
By substituting (4) in (3) and taking the equivalent dual

problem, we obtain:

JD(α) =
1

2

V∑
v=1

∥Sv 1
2

w Wv
out∥2F +

c

2
αTPα− crTα

+
c

2
tr
(
TTT

)
+

λ

2
αTα, (6)

where P ∈ RV×V is a matrix having its elements equal to
[P]kl = tr

(
Wk T

outΦ
kΦl TWl

out

)
and r ∈ RV is a vector
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having its elements equal to rv = tr
(
TTWv T

outΦ
v
)
. By solv-

ing for ϑJD(α)
ϑα = 0, α is given by α =

(
P+ λ

c I
)−1

r.
By substituting (4) in (3) and taking the equivalent dual

problem, we can also obtain:

JD(Wv
out) =

1

2

V∑
v=1

tr
(
Wv T

outS
v
wW

v
out

)
+

c

2
tr
(
TTT

)
+

c

2
tr

(
V∑

v=1

V∑
l=1

αvαlW
v T
outΦ

vΦl TWl
out

)

− c
V∑

v=1

tr
(
αvW

v T
outΦ

vTT
)
+

λ

2
αTα. (7)

By solving for ϑJD(Wv
out)

ϑWv
out

= 0, Wv
out is given by:

Wv
out =

(
2

αvc
Sv
w + αvΦ

vΦv T

)−1

Φv(2T−O)T . (8)

As can be observed in (??), (8), α is a function of
Wv

out, v = 1, . . . , V and Wv
out is a function of αv. Thus, a

direct optimization of JD with respect to both {αv,W
v
out}Vv=1

is intractable. Therefore, we employ an iterative optimization
scheme formed by two optimization steps. In the following,
we introduce a index t denoting the iteration of the proposed
iterative optimization scheme.

Let us denote by Wv
out,t, αt the network output and com-

bination weights determined for the iteration t, respectively.
We initialize Wv

out,1 by using (2) and set α1,v = 1/V for
all the action video representations v = 1, . . . , V . By us-
ing Wv

out,t, αt+1 is updated by using (??). After the cal-
culation of αt+1, Wv

out,t+1 are updated by using (8). The
above described process is terminated when (JD(t)−JD(t+
1))/JD(t) < ϵ, where ϵ is a small positive value equal to
ϵ = 10−10 in our experiments.

After the determination of the set {αv,W
v
out}Vv=1, the

network response for a given set of test action vectors xv
l is

given by:

ol =
V∑

v=1

αvW
v T
outϕ

v
l . (9)

4. EXPERIMENTS

In this section, we present experiments conducted in or-
der to evaluate the performance of the proposed classification
scheme in human action recognition. We have employed three
publicly available databases, namely the Olympic Sports, the
Hollywood2 and the Hollywood 3D databases. In the fol-
lowing subsections, we describe the databases and evaluation
measures used in our experiments. Experimental results are
provided in subsection 4.4.

We compare the performance of the proposed approach
to that of two commonly used unsupervised video represen-
tation combination schemes, i.e., the concatenation of all the

available video representations before training a SLFN net-
work by using (2) and the mean output of V SLFN networks,
each trained by using one video representation using (2).

Regarding the parameter values used in our experiments,
they have been determined by following a grid search strategy
using values c = 10q, q = 0, . . . , 3 and λ = 10l, l = 0, . . . , 3.
The dimensionality of the BoF-based action video represen-
tations has been set equal to Dv = D = 4000, v = 1, . . . , V .
The number of hidden layer neurons has been set to Hv =
H = 1000, v = 1, . . . , V in all the cases. For the hidden
layer neurons, we have employed the χ2 activation function:

Φχ2(vj , b,xi) = exp

(
− 1

2b

D∑
d=1

(xid − vjd)
2

xid + vjd

)
, (10)

which has been found to outperform other choices, like the
RBF and the sigmoid function. The parameter b has been
set equal to the mean value of the χ2 distances between the
training action vectors and the network input weights. Since
we employ a BoF-based action video representation, the net-
work input weights have been chosen to have the form of his-
tograms, i.e., to be nonnegative and with unit l1 norm. For
fair comparison, we employ the same network input weights
in all the experiments.

4.1. The Olympic Sports database

The Olympic Sports database [18] consists of 783 videos de-
picting athletes practicing 16 sports: high-jump, long-jump,
triple-jump, pole-vault, basketball lay-up, bowling, tennis-
serve, platform, discus, hammer, javelin, shot-put, spring-
board, snatch, clean-jerk and vault. Example video frames of
the database are illustrated in Figure 1a. We used the standard
training-test split provided by the database (649 training and
134 test videos). The performance is evaluated by computing
the average precision (AP) for each action class and reporting
the mean AP over all classes (mAP), as suggested in [18].

4.2. The Hollywood2 database

The Hollywood2 database [19] consists of 1707 videos de-
picting 12 actions: answering the phone, driving car, eating,
ghting, getting out of car, hand shaking, hugging, kissing,
running, sitting down, sitting up and standing up. The videos
have been collected from 69 different Hollywood movies. Ex-
ample video frames of the database are illustrated in Figure
1b. We used the standard training-test split provided by the
database (823 training and 884 test videos). Training and test
videos come from different movies. The performance is eval-
uated by computing the mean Average Precision (mAP) over
all classes, as suggested in [19].
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Table 1. Action Recognition Performance (mAP) on the Hollywood2, Olympic Sports and Hollywood 3D databases.
Olympic Sports Hollywood2 Hollywood 3D (mAP) Hollywood 3D (CR)

Method [4] 74.1 % 58.2 % - -
Method [17] - - 15 % 21.8 %

Best Descriptor 66.48 % 52.04 % 20.8 % 23.05 %
Concatenation 67.4 % 55.97 % 20.6 % 21.75 %
Mean Output 73.15 % 56.26 % 26.16 % 26.96 %

Proposed Scheme 82.12 % 58.2 % 30.79 % 35.71 %

(a) (b) (c)

Fig. 1. Video frames of the: a) Olympic Sports, b) Hollywood2 and c) Hollywood 3D databases.

4.3. The Hollywood 3D database

The Hollywood 3D database [17] consists of 951 stereoscopic
videos (left and right channel) depicting 12 actions: dance,
drive, eat, hug, kick, kiss, punch, run, shoot, sit down, stand
up, swim and use phone. Another class referred to as ‘no
action’ is also included in the database. In our experiments
we have used only one (the left) channel of each stereoscopic
video. Example video frames of this database are illustrated
in Figure 1c. We used the standard (balanced) training-
test split provided by the database (643 videos are used for
training and performance is measured in the remaining 308
videos). Training and test videos come from different movies.
The performance is evaluated by computing the mean Aver-
age Precision (mAP) over all classes and the Classification
Rate (CR), as suggested in [17].

4.4. Experimental Results

Table 1 illustrates the performance obtained by using different
descriptor type combination approaches on the the Olympic
Sports, Hollywood2 and the Hollywood 3D databases. We
also report the best performance obtained by using one of the
available descriptors. As can be seen, the use of the mean
SLFN network output outperforms the use of an action video
representation obtained by concatenating all the available ac-
tion vectors. This seems reasonable, since in the case of
concatenated video representations all the descriptors equally
contribute to the discriminative ability of the combined repre-
sentation. On the other hand, by training multiple networks,
each one on a different descriptor type, the discriminative

power of each video representation is not affected. The pro-
posed optimization scheme, by properly combining the con-
tribution of each representation on the final classification re-
sult, achieves the highest performance in all the cases, pro-
viding 2 − 9% increase on the performance of the remain-
ing combination schemes. In Table 1, we also provide the
performance reported in [4] for the same action video repre-
sentations and the best performance reported in [17]. In both
cases, classification is performed by using SVM and a com-
bined action video representation obtained by (element-wise)
kernel matrix multiplication. As can be seen, the proposed
approach outperforms them in most cases.

5. CONCLUSIONS

In this paper, we proposed an optimization scheme that can
be employed for neural network-based action classification.
Proper regularization terms have been incorporated in the
ELM optimization problem in order to extend it to multi-view
action classification. In order to determine both optimized
network and action representation combination weights, we
proposed an iterative optimization process. The proposed
algorithm has been evaluated on three publicly available ac-
tion recognition databases, where its performance has been
compared with that of the best single-descriptor choice and
two commonly used video representation combination ap-
proaches, i.e., the vector concatenation before learning and
the network output combination by using networks trained on
different descriptor types independently.
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