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ABSTRACT

This paper addresses automatic inpainting of a specific but
common kind of videos captured by imaging a far or pla-
nar scene with a moving camera. The projective model tells
that the frames of such videos can be approximately aligned
by linear mappings except for some to-be-inpainted small re-
gions. Mathematically, we treat inpainting as a global opti-
mization with a linear system incorporating both the tempo-
ral consistency and the priors of the inpainting regions: (i)
temporally registered frames form a low rank matrix; (ii) the
pixels in the given inpainting regions destroy the low rank-
ness with gross sparse errors. Besides, we also use a soft
mask to ensure consistent global brightness before and after
inpainting. Further, we propose a numerical solution to above
optimization based on Augmented Lagrangian Method. The
experiment results demonstrated our advantageous in both p-
reserving thin scene structures and the details prone to be s-
moothed out by previous methods.

Index Terms— Video inpainting, low rank, sparse

1. INTRODUCTION

Video inpainting is of wide applications, e.g., excluding un-
wanted scratches or objects, background modeling, etc., and
has been extensively explored. Past years have witnessed var-
ious approaches which generally fall into following types:

(i) Local block matching. Primary studies in video in-
painting, such as [1], apply image inpainting methods frame
by frame. Such direct image-to-video extension neglects the
temporal continuity and the results suffer from fluctuations.
Recent video inpainting methods fill holes using fragments in
other frames. To handle complex videos, Shih et al.[2] and
Patwardhan et al.[3][4] inpaint subregions separately with d-
ifferent methods or priorities. Some other researchers utilize
the temporal consistency explicitly. For example, Mounira et
al.[5] and Miguel et al.[6] apply motion compensation and
conduct block matching across frames to estimate the un-
known regions. Besides explicit motion compensation, Jia
et al.[7] adopt additional techniques to eliminate spatial fu-
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sion artifacts and temporal fluctuations. Although the across-
frame block matching helps obtaining reasonable results, the
exploration of the temporal consistency is limited to several
frames out of the whole sequence and artifacts exist widely.
(ii) Global optimization. ~Wexler et al.[8][9] extend the im-
age inpainting approach by belief propagation along tempo-
ral dimension to build a spatiotemporal 3D graph model. In-
stead of optimizing the 3D graph directly, Liu et al.[10] com-
plete the motion field before inpainting the regions. These
approaches via global optimization are often time consuming
and the large gap between simple energy definition and the di-
versity of nature videos tend to generate over smooth results.

In addition, either using local or global optimization, pre-
vious studies often attempt to propose a general inpainting
method and trade off performance for the generality.

Motivation and our approach. We notice that in many
cases, such as the planar or far scenes captured by a smooth-
ly rotating or translating camera, the adjacent video frames
are generally linearly related. These video frames can be reg-
istered by affine or homography transformations except for
the to-be-inpainted regions, e.g., logo, subtitles. Frames of
these scenes can all be aligned by either affine or homogra-
phy transformation, and thus display a globally similar optical
flow along the temporal dimension. Such observations inspire
us to adopt a linear system to model such transformations and
exploit temporal redundancy explicitly and automatically.
Mathematically, inpainting such video clips can be formu-
lated as matrix completion robust to both transformation and
gross error. In spite of the illposedness of the inpainting task,
the low rank of the registered frame stack and the sparsity of
the gross errors are both informative priors and would ben-
efit generating reasonable inpainting result. In addition, the
linearity of the latent transformation makes possible incor-
porating its estimation into a joint optimization framework.
Inspired by the robust alignment method proposed by Peng
et al.[11], we introduce two additional task specific priors for
inpainting: (i) The position of the inpainting regions are giv-
en; (ii) The inpainted result should consist with the original
video in global brightness. Fig. 1 gives one exemplar result,
the region highlighted with dashed rectangle can be robust-
ly inpainted and the clear background of the “airplane’ error
term implies a good preservation of the global brightness.
This paper has some similarity with but largely differ-
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Fig. 1. Leftmost a clip with labeled inpainting regions. Leftcenter and rightcenter: the highlighted frame in the clip and its

inpainting result. Rightmost: the separated gross error.

ent from two previous works. Ding et al.[12] and Ling et
al.[13][14] both adopt manifold learning techniques to ex-
plore the temporal redundancy of video frames for comple-
tion. These methods are applicable for objects that can be
modeled by a template with some object specific labeling,
while we focus on a different type of videos. Besides, our
approach is under a new framework and can impose priors
from the inpainting regions additionally and automatically.

2. FORMULATION AND ALGORITHMS

Let V = {V}...,} denote the n to-be-inpainted video frames,
we can align them by applying a series of transformation-
s T = {T1..,,} to form a low rank matrix L = {L;...,,},
except for the entries in the binary inpainting region R =
{R1..,}. We also define an align operator o as Vo T =
(Vi Ty, Vo x Ty, -+, V,, x T,,] and formulate video inpaint-
ing as following optimization:

arg min_ [[L||. + oM © B (M
st. VoT=L+E.

Here we use nuclear norm || - || to model the low rank con-
straint; E is a sparse gross error in the pre-specified mask re-
gions M = RoT, we minimize its /; norm to force the sparsity
and ensure color consistency out of the mask boundary; « is
the coefficient balancing two energy terms.

To linearize the constraint in (2), we adopt the similar s-
trategy in [11] to perform 1st order Taylor expansion and get

i L||. MGE 2
arg min - [[L|l + of MO E|l, @
st. VoT+Y JiATee] =L+E.
i=1
Here J; = (MN =7, and ¢; is the standard ba-
Tvee(VioQ)l2 ) 16=T !

sis of R™. To convexify above objective function, we intro-
duce three auxiliary variables S and h;...o and turn it into

argmin ||L||« 4+ «||S|]1 3)
st. hh =S—M®GE=0

hy =VoT+ ) JiATee!
i=1

~-L-E=0,

where © is the component-wise product that for any two ma-
trices A and B, (A ® B)” = A”B”
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In this paper, we use ALM to optimize the above objec-
tive, with the Augmented Lagrangian equation defined as

L=, +a||sn1+2(< Yih >+ Shi}). @

i=1
in which < -,- > denotes inner product, Y; is the Lagrange

multiplier matrix and y is a positive scalar.
Update L. Removing the items irrelevant to L in (4) gets

L+ = argmin L],

(k) n
+ ”THL—V oT—>" HATW el

i=1

—( (k)) Y(k)—&—E(k)H

which is the typical nuclear norm optimization and thus L’s
update rule can be written as

LY = Us(,00y-1(3) VT, (5)

Here UXVT denotes the singular value decomposition of

(VoT+ 0", AT el 4+ (i)=Y — E®) and
the shrinkage operator s,,-1(X) keeps only the entries where
Eij > ,U;il.

Update S. We keep only the items related to S and get a
convex optimization function

(k) 2
§anmy%mmwrﬁ%f%—M®E®+QMU4YWH
F
Following the ALM algorithm, S’s updating rule is derived

as

Sk+1)

= 5(u00)-1a (MO E® — (uM)=1y(M) (6)

Update E.  Without a closed-form updating rule for E,

we adopt gradient decent method to update it iteratively:

EFD = E® — 5 x g—’C\E )y ()

where 0 is the gradient descent step parameter and

oL
OE

+pu® (EV oT=> " LAT®eel +L*) — (u<k>)1Yg’“)> :

i=1

pPMOE -~ (S + ()Y oM ®)

Update AT. The energy terms with respect to T can be
calculated in terms of MSE as

ZJ*

ATHHD E(k)_VOT_(u(k))ﬂYék))eﬁiT.

€))

ICIP 2014



Fig. 2. The illustration of the fusion strategy.

Here JZ-T denotes the Moore-Penrose pseudoinverse of .J;.
Update Y;,Y2. According to the ALM algorithm, the
Augmented Lagrangian Multiplier Y, Y2 can be updated as

yED — y®) oy p(), (10)
Update n.  The parameter u can be updated as
p* Y = min(pp™, pnaa), (11)

The constant parameters are set as follows: a=3e-2,
maz=10e6, p = 1.1 and d=1e-3. For more clarity, the main
steps are summarized in Alg. 1.

When the video is of time varying illuminations, directly
warping back the recovered low rank stack according to the
optimized T is unideal. As shown in Fig. 2, minimizing |M©®
E||; forces the separated error in M close to zero and retains
the illumination well, but in M the variation violates the low
rank prior and thus causes artifacts. Therefore, we compute
a scaling map for brightness adjustment: the scaling in M
is set as the ratio between original input and the recovered
image, while that in M is calculated by spreading the factor
in M inward via heat diffusion. The simplicity of the global
illumination pattern promises good result from such diffusion.

3. EXPERIMENT

We test the performance of our approach on a series of videos,
with the binary masks labeling the to-be-inpainted regions
provided. As for initial frame registration, we adopt SIFT al-
gorithm to extract hundreds of marker points and select three
that match best among all of the frames to fit a global trans-
formation in terms of MSE. The transformations are defined
over planar homography group.

We run our Matlab implementation on a workstation with
Intel Xeon 2.27 GHz CPU and 4 GB memory. Without spe-
cial optimization, current algorithm is able to handle 20 video
frames of 300 x 300 pixels. It is worth noting that we can
adopt a hierarchy strategy to handle high resolution videos.
The algorithm usually needs 6-10 outer iterations to converge
and the running time is around 200s for above data.

Fig. 1 and Fig. 3 respectively show inpainting results on
three sequences: (1) excluding moving objects; (2) remov-
ing user specified logo or restoring destroyed regions; (3) re-
covering regions occluded by subtitles. The results demon-
strate that the proposed approach is able to inpaint various
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Algorithm 1: Algorithm for the outer loop of optimization

Input : Original video V and corresponding mask R,
and initial transformation T
Output : Aligned inpainted video L, sparse error E and

transformation T

1 while not converged do

2 e compute Jacobian matrices {.J;...n };

3 e compute mask of aligned frames M <— Ro T}

4 e solve the linearized convex optimization defined in
Eq. 3 using Alg. 2;

5 e update transformation T «— T + AT™;

¢ end

Algorithm 2: Algorithm for the inner loop of optimization

Input : Original video V, current mask M, current
transformation T and Jacobian matrices {.J; }
: Aligned video L, sparse error E and

transformation increment AT
0
1 L =VoT,E® =0,AT® =0,Y") = 0;
while not converged do

e update L*++D according to (5);
(k+1)

Output

e update S according to (6);

update EFH1) according to (7);

update AT+ according to (9);

update Y, p following (10) and (11), respectively;
kE=k+1;

e X A R W N

end

occlusions successfully. Recall that our model imposes no
constraint to the shape and position of the inpainting regions,
such as its motion, shape, position, etc., so adjustment unnec-
essary for these different cases. The second video in Fig. 3
is of large illumination variance and our algorithm is able to
preserve the original hue successfully. The closeup compari-
son with and advantages over two state-of-the-arts are shown
in Fig. 4 and discussed in the figure caption.

4. DISCUSSIONS AND FUTURE WORK

This paper proposes to use a convex optimization framework
to inpaint a widely existing type of videos automatically and
obtains promising results. The proposed approach makes ex-
tensive exploration of the temporal redundancy and is advan-
tages in preserving details and global illumination. In addi-
tion, our algorithm is of much higher computational efficien-
cy compare to the global optimization approaches.

The assumption that the video frames can be aligned
by linear mappings is violated in some complex cases, e.g.,
non-rigid motion, multiple moving objects. Inpainting these
videos needs combination with explicit alignment techniques
robust to occlusion and will be studied in the near future.
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Fig. 3. Inpaint result of another two different cases. top: partial damage/occlusion; bottom: subtitle occlusion.

— - L . ; = L " E=—

By Wexler et al.[9] By Patwardhan et al.[4] Our result Ground truth

Fig. 4. Comparison with state-of-the-arts on two clips in Fig. 3. The comparison demonstrates that our approach is closest to
the ground truth, and is apparently advantages in removing unwanted occlusions neatly while preserving the details. This is
mainly due to that the low rank prior makes use of the temporal redundancy of the whole sequence instead of one or a subset.
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