
HIGH-THROUGHPUT AND LOW-COST HARDWARE-ORIENTED INTEGER TRANSFORMS
FOR HEVC

Trang Thi Thu Do, Yih Han Tan and Chuohao Yeo

Institute for Infocomm Research

ABSTRACT

To achieve a target bit-rate reduction of 50% over H.264/AVC
while maintaining equivalent perceptual video quality, High
Efficiency Video Coding (HEVC) includes several new cod-
ing tools including a new set of integer transforms. Since
these transforms are more complex than the H.264/AVC
transforms, it is more challenging to design and develop
high-performance integer transform hardware for HEVC.
In this paper, we propose a series of high-throughput and
low-cost hardware-oriented HEVC transform algorithms by
using a butterfly structure and replacing multiplications by
additions and shift operations in a way that minimizes crit-
ical computation paths. Compared to the algorithms using
other methodologies like multiplierless multiple constant
multiplication (MMCM) or decomposition to sparse matri-
ces, our algorithms achieve around 20% shorter critical paths
while consuming relatively small numbers of additions and
shift operations. Hardware designs applying our proposed
algorithms can increase their throughput by 20% while main-
taining a reasonable resource consumption compared to when
applying other algorithms.

Index Terms— High Efficiency Video Coding (HEVC),
Discrete Cosine Transform (DCT), Discrete Sine Transform
(DST), Critical Path Optimization, Multiplierless Multiple
Constant Multiplication (MMCM).

1. INTRODUCTION

The Discrete Cosine Transform (DCT) has been one of the
most essential tools in image and video coding due to its abil-
ity to perform near-optimal de-correlation [1]. However, the
DCT uses floating point arithmetic, which could cause mis-
matches between its forward and inverse transforms. In or-
der to avoid mismatches and to avoid the complexity of the
floating point arithmetic, integer transforms that are integer
approximations of the DCT are used in the latest video cod-
ing standards such as H.264/Advanced Video Coding [2] and
High Efficiency Video Coding (HEVC) [3].

Besides the DCT-based integer transforms, HEVC uses an
alternative transform which is an integer approximation of the
Discrete Sine Transform (DST) for coding the luma residual
blocks in intra-picture prediction modes [4].

HEVC is more complex than its predecessor H.264/AVC
due to the inclusion of tools to achieve its target of a 50%
bit-rate reduction over H.264/AVC for equal perceptual video
quality [3]. HEVC decoder complexity is about 1.5 times of
that of H.264/AVC [5], while HEVC encoders are expected
to be several times more complex than H.264/AVC encoders
[6]. Regarding transform complexity, HEVC supports up to
32 × 32 transforms with 7-bit multipliers while H.264/AVC
only supports up to 8 × 8 transforms with 4-bit multipliers.
The maximum input bit-depth to a 1-D transform in HEVC
is 16 [3], while that of H.264/AVC is 12 [2]. Due to these
increased operational requirements, it is more challenging
to design high-performance integer transform hardware for
HEVC. It should be noted that performance of integer trans-
form designs is mostly measured by throughput, which is
computed as the amount of data processed in one unit of
time, since integer transform designs having higher through-
put can support the encoding and decoding of higher resolu-
tion videos. For designs that have further approximations or
pruning for the forward transforms, peak signal-to-noise ratio
(PSNR) or Bjøntegaard distortion-rate (BD-rate) [7] can be
used as an additional factor for performance measurement.

To achieve high throughput with fixed data sizes, trans-
form processing time needs to be minimized. In hardware
designs, processing time depends on critical path lengths of
transform designs. Therefore, for high throughput, we need
to minimize the critical paths of the transform algorithms.

There have been previous reported works on high through-
put and/or efficient integer transforms for HEVC [8–16]. Ex-
cept for some of the designs which mainly targets resource
sharing for area efficiency ([8–10]), most of them target high
throughput by simplifying implementation algorithms and
minimizing operation count, i.e., resource consumption.

In particular, there have been one reported design that ex-
ploits the similarity between the H.264/AVC and HEVC 8×8
transform matrices to develop the 8 × 8 transform [11]. As
H.264/AVC only supports the transform sizes of up to 8 × 8,
this method is not applicable to the HEVC larger size trans-
forms like 16 × 16 and 32 × 32. The remaining designs de-
compose the transforms into odd and even parts together with
butterfly blocks like the Partial Butterfly (PB) implementa-
tion in the HEVC reference software, or HM [17]. To im-
plement the odd parts, the designs use either (1) multiplier-

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20142105

+

+

+

+

e0

e1

e2

e3

+

+

+

+

e4

e5

e6

e7

+

+

+

+

e8

e9

e10

e11

+

+

+

+

e12

e13

e14

e15

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

src0

src1

src2

src3

src4

src5

src6

src7

src8

src9

src10

src11

src12

src13

src14

src15

src16

src17

src18

src19

src20

src21

src22

src23

src24

src25

src26

src27

src28

src29

src30

src31
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

+

+

+

+

ee0

ee1

ee2

ee3

+

+

+

+

ee4

ee5

ee6

ee7

+

+

+

+

eo7

eo6

eo5

eo4

+

+

+

+

eo3

eo2

eo1

eo0

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

+

+

+

+

eee0

ee
e3

+

+

+

+

eeo3

eeo0

+

+

+

+

+

+

+

+

-

-

-

-

+

+

+

+

eeee0

eeee1

eeeo1

eeeo0

+

+

+

+

-

-

+

+

+

+

16-point 8-point 4-point

36
-83

83
36

64
64

64
-64

d
e
s
0

d
e
s
2

d
e
s
1

d
e
s
3

d
e
s
1

d
e
s
3

d
e
s
5

d
e
s
7

des0

des16

des8

des24

des4

des12

des20

des28

des2

des6

des10

des14

des18

des22

des26

des30

d
e
s
0

d
e
s
4

d
e
s
2

d
e
s
6

d
e
s
2

d
e
s
6

d
e
s
1
0

d
e
s
1
4

d
e
s
0

d
e
s
8

d
e
s
4

d
e
s
1
2

d
e
s
1

d
e
s
3

d
e
s
5

d
e
s
7

d
e
s
9

d
e
s
1
1

d
e
s
1
3

d
e
s
1
5

des1

des3

des5

des7

des9

des11

des13

des15

des17

des19

des21

des23

des25

des27

des29

des31

4 odd

32-point

o15

o14

o13

o12

o11

o10

o9

o8

o7

o6

o5

o4

o3

o2

o1

o0

32 odd

16 odd

8 odd

(a) 4, 8, 16, 32-point PB DCT algorithms

-

+

+

+

c0

c1

c2

c3

+

+

des1

des0

des2

des3

+

+

src0

src3

src1

src2 74

29

55

29

55

-

55

29

-

74-

(b) Fast DST algorithm

Fig. 1. Data flows of the forward transform algorithms used
in the HEVC reference software. src (source or input) and
des (destination or output) are residual and transformed data,
respectively. Each arrow represents a data flow. Each gray
arrow represents a data flow with a multiplication.

less multiple constant multiplication (MMCM) [18] to replace
multiplications with additions and shift operations in a way
that minimizes the operation count [15,16]; or (2) decompose
odd matrices into sparse matrices for ease of implementation
[12–14]. By using MMCM, the first option efficiently saves
hardware resources. By using sparse matrices, the second op-
tion easily implements the transforms by additions and shift
operations instead of multiplications. It also enables hardware
sharing for multiple coding standards [12].

However, simplifying the implementation algorithms and
minimizing operation count does not ensure the shortest crit-
ical paths for the algorithms. This is because in hardware
implementation, operations can be designed to perform in
parallel. In this paper, we provide a series of high-throughput
and low-cost hardware-oriented HEVC integer transform al-
gorithms which have critical computation path lengths of
80% of those of the best competitors, and consume reason-

able numbers of additions and shift operations. The algo-
rithms support the HEVC 4 × 4, 8 × 8, 16 × 16 and 32 × 32
DCTs, and 4 × 4 DST.

The rest of the paper is organized as follows. The HEVC
transforms and their implementation in the HM are reviewed
in Section 2. The proposed forward transform implementa-
tion algorithms are introduced in Section 3. Results are dis-
cussed, followed by the concluding remarks in Section 4.

2. INTEGER TRANSFORMS

2.1. Integer Transforms in HEVC

Like in H.264/AVC, the transform operations in HEVC are
based on the DCT, following Equations 1 and 2.

W = HfXHT
f , (1) X ′ = HiW

′HT
i , (2)

where Hf and Hi are the core forward/inverse transform
matrices; X and W are residual and transformed blocks,
which are input and output of forward transform, respec-
tively; and W ′ and X ′ are de-quantized and reconstructed
residual blocks, which are input and output of inverse trans-
form, respectively.

The core inverse transform matrices (His) were derived
by approximating the coefficients of the scaled inverse DCT
matrices to integer values under the considerations of maxi-
mizing the precision and proximity to orthogonality and lim-
iting the dynamic range for transform computation [3]. The
forward transform matrices (Hf s) used in the HM are the
transpose of the His. In total, there are four inverse transform
matrices and four corresponding forward transform matrices
to support four different transform sizes. The four forward
DCT matrices can be found in [19].

The HEVC DST also follows Equations 1 and 2, where
its forward matrix is the transpose of its inverse matrix. The
forward DST matrix can be found in [3].

2.2. Integer Transforms in HEVC Reference Software

A 2-D forward/inverse transform of a block can be computed
by repeatedly applying 1-D forward/inverse transform algo-
rithms to all the rows and columns of the block. The forward
transformation of a residual block includes two stages. In the
first stage, each row of residual data is 1-D transformed by ap-
plying a 1-D transform algorithm; while in the second stage,
all the columns of the result in the first stage are transformed
using the same algorithm. Figure 1 shows the original 1-D
Partial Butterfly (PB) forward DCTs and the fast 1-D forward
DST used in the HM. Each DCT algorithm can be divided
into a butterfly block, an even part and an odd part. In Figure
1a, the butterfly blocks and the even parts are on the left and
on top of the odd parts, respectively. It is found that the 16-, 8-
and 4-point PB algorithms have the same data flow structures
with the even parts of the 32-, 16- and 8-point algorithms, re-
spectively. Table 1 shows the operation counts and critical

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20142106

Table 1. Resource consumptions and critical path lengths of
the 1-D transform algorithms in HEVC reference software.
HM transform Resource Critical Path
algorithms MulsAdds Total∗ MulsAdds Total∗

4-point Partial Butterfly 6 8 44 1 2 8
8-point Partial Butterfly 22 28 160 1 3 9
16-point Partial Butterfly 86 100 616 1 4 10
32-point Partial Butterfly 342 372 2424 1 5 11
4-point fast DST 11 8 74 1 3 9

Muls: multiplications; Adds: addition/subtractions; ∗: Total add count
when only adds (without muls) are used. As the multipliers are smaller
than 27, 6 2-input adds can be used to implement each mul.

8
32

44

160

0

50

100

150

200

4-point DCT 8-point DCT

N
u

m
b

e
r

o
f

ad
d

it
io

n
s

Resource consumption

H.264/AVC

HEVC 2

5

8
9

0

2

4

6

8

10

4-point DCT 8-point DCT

N
u

m
b

e
r

o
f

ad
d

it
io

n
s

Critical path length

H.264/AVC

HEVC

Fig. 2. Resource consumptions and critical path lengths of the
4- and 8-point transform algorithms used in the H.264/AVC
and HEVC reference softwares.

path lengths of the 1-D transform algorithms in the HM. As
can be seen, when the transform size increases, the operation
count also increases drastically. Figure 2 further illustrates the
significant increase in the resource consumption and critical
path length of the HEVC transforms over those of H.264/AVC
[20] when comparing the 4- and 8-point algorithms.

Due to the complexity of HEVC transforms, much design
effort is needed to achieve high-throughput transforms for
HEVC. To achieve high throughput, processing time for the
transform algorithms needs to be minimized. In hardware im-
plementation, processing time depends on critical path length.
Therefore, transform implementation algorithms which has
the shortest critical computation path and consume a reason-
able resource is strongly desired.

3. PROPOSED TRANSFORM DESIGNS

Taking critical path minimization into account, we reimple-
ment the HEVC transform algorithms by using just additions
and shifts. For the DCTs, like the MMCM and sparse matrix
methods, we first decompose the transforms using the par-
tial butterfly structure. We then compute the minimum crit-
ical path length and find an algorithm that achieves it with
a reasonable operation count for each of the odd parts. The
method to find these algorithms starts with multiplication-to-
addition conversions that minimize the operation counts for
each multiplication. It then arranges the operations into the
binary adding tree for each multiplication to ensure achieving
the minimum critical path length. It finally re-arranges the

+

+

+

+

e0

e1

e2

e3

+

+

+

+

e4

e5

e6

e7

+

+

+

+

e8

e9

e10

e11

+

+

+

+

e12

e13

e14

e15

+

+

+

+

o15

o14

o13

o12

+

+

+

+

o11

o10

o9

o8

+

+

+

+

o7

o6

o5

o4

+

+

+

+

o3

o2

o1

o0

src0

src1

src2

src3

src4

src5

src6

src7

src8

src9

src10

src11

src12

src13

src14

src15

src16

src17

src18

src19

src20

src21

src22

src23

src24

src25

src26

src27

src28

src29

src30

src31
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

+

+

+

+

ee0

ee1

ee2

ee3

+

+

+

+

ee4

ee5

ee6

ee7

+

+

+

+

eo7

eo6

eo5

eo4

+

+

+

+

eo3

eo2

eo1

eo0

+16

-

-

-

-

-

-

-

-

+

+

+

+

eee0

eee1

eee2

eee3

+

+

+

+

eeo3

eeo2

eeo1

eeo0

-

-

-

-

+

+

+

+

eeee0

eeee1

eeeo1

eeeo0

-

-

+

+

+

+

16-point 8-point 4-point

d
e

s
0

d
e

s
2

d
e

s
1

d
e

s
3

d
e

s
1

d
e

s
3

d
e

s
5

d
e

s
7

des0

des16

des8

des24

des4

des12

des20

des28

des2

des6

des10

des14

des18

des22

des26

des30

d
e

s
0

d
e

s
4

d
e

s
2

d
e

s
6

d
e

s
2

d
e

s
6

d
e

s
1

0
d

e
s

1
4

d
e

s
0

d
e

s
8

d
e

s
4

d
e

s
1

2
d

e
s

1
d

e
s

3
d

e
s

5
d

e
s

7
d

e
s

9
d

e
s

1
1

d
e

s
1

3
d

e
s

1
5

des1

des3

des5

des7

des9

des11

des13

des15

des17

des19

des21

des23

des25

des27

des29

des31

CPO
32 odd

+8
CPO

16 odd

o45

o87

o57

o43

o70

o25

+
o5

o7

o9

<<2

o

<<3

<<4

<<1

<<3

<<2

<<3

<<4

-

<<3

<<3

CPO 16 odd

o90

o80

o9

CPO
16 odd

CPO
16 odd

CPO
16 odd

CPO
16 odd

CPO
16 odd

CPO
16 odd

CPO
16 odd

CPO
32 odd

CPO
32 odd

CPO
32 odd

CPO
32 odd

CPO
32 odd

CPO
32 odd

CPO
32 odd

CPO
32 odd

CPO
32 odd

CPO
32 odd

CPO
32 odd

CPO
32 odd

CPO
32 odd

CPO
32 odd

CPO
32 odd

CPO
8 odd +4

+16

+16

+16

+16

+16

+16

+16

+16

+16

+16

+16

+16

+16

+16

+16

+8

+8

+8

+8

+8

+8

+8

CPO
8 odd +4

CPO
8 odd +4

CPO
8 odd +4

<<6

<<6

-

CPO
4 odd

CPO
4 odd

o36

o36

o83

o83
-

+

+

o9

+<<6

<<2<<3

<<1
o65

o83

CPO 4 odd

o o36

+

+

<<3

+

o9

<<2

<<5

<<4

o80

o5

<<1

-

o o50

o89

o75

o18CPO 8 odd

CPO 32 odd

+

+

+

+

+

+

+

+

+

+

+

+

+

o38

o22

o88

o90

o82

o85

o13

o5

o73

o61

o67

o54

o78

o46

o31

<<4
-

+ o65

+ o31

<<5
<<1

-

<<4

-
-

<<3

<<6
<<1

<<2 -

<<3

<<2

<<3

<<4

<<1

<<1 o80

<<5

<<1
<<3
-

o

o4

<<2

32-point

+ +

+

+

+ +

+

+

+ +

-

<<1

4 4

1
6

8 8

6
4

16

2
5

6

16

(a) Proposed DCTs. A “CPO N odd” block has N
2

outputs, with output on =
n× o, where o is the input and n is an integer multiplier. Addition block +M

(Figure 3c) has M inputs which are connected to M outputs from M different
CPO 2M blocks. Please refer to HM [17] for inputs and addition/subtractions
required in the addition blocks.

+

+

+

+

+

+

<<2 y84

y55

y29

y74

y5

y7

<<6
<<1

<<3

<<2

<<3

<<2

-

-

y

CPO DST

++
<<2 y74y5

<<6
<<1

y

CPO DST74

CPO DST

CPO DST74

CPO DST

CPO DST

src0

+

(DST)

4

4

4

des0

src1

src2

src3

des1

des2

des3

29src0

55src1

74src2

84src3

74src0

74src1

74src3

55src0

84src1

74src2

29src3

+4

+4

+4

+

+

84src0

29src1

74src2

55src3

des0

des1

des2

des3

+ (DST)

-

-
-

-

-

(b) Proposed DST. Blocks CPO DST and DST74 out-
put yn = n× y, where y is the their input and n is an
integer multiplier. Block +(DST) has 15 inputs cor-
responding to the outputs from the CPO blocks. Block
+4 (Figure 3c) for the DST consists only additions.

±

+16

+4

+8

±

±

±

±

±

±

±

±

±

±

±

±

±

±

(c) Addition
blocks. Each
operator can
do addition or
subtraction.

Fig. 3. Proposed forward transform algorithms for HEVC.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20142107

Table 2. Resource consumptions and critical path lengths of
the proposed 1-D CPO transform algorithms for HEVC.

Resource Critical Path
Proposed transform algorithms AddsShift Adds Shift
4-point CPO DCT 14 8 4 2
8-point CPO DCT 54 28 5 2
16-point CPO DCT 198 92 6 2
32-point CPO DCT 710 268 7 2
4-point CPO DST 31 24 4 2
Adds: 2-input addition/subtractions; CPO: critical path optimization.

1

4

16

64

256

1024

4096

4-point
DCT

8-point
DCT

16-point
DCT

32-point
DCT

4-point
DST

N
u

m
b

e
r

o
f

ad
d

it
io

n
/s

u
b

tr
ac

ti
o

n
s

Resource Consumption

HM [11] [12] [13] [14] [15] [16] Proposed

0

2

4

6

8

10

12

4-point
DCT

8-point
DCT

16-point
DCT

32-point
DCT

4-point
DSTN

u
m

b
e

r
o

f
ad

d
it

io
n

/s
u

b
tr

ac
ti

o
n

s Critical Path

HM [11] [12] [13]
[14] [15] [16] Proposed

Fig. 4. Resource consumptions and critical path lengths of
different algorithms. Missing bars/points at an algorithm
means that the algorithm does not support the transform.

operations to maximize the common operation counts among
the multiplications to further reduce the total operation count.
Since each of the odd parts always has a longer minimum
critical path than its associated even part, the overall trans-
form algorithms found will achieve the minimum critical path
lengths among algorithms using the partial butterfly structure.
For the DST, we also use the same methodology to find an al-
gorithm that achieves the minimum critical path length for its
multiple constant multiplication.

For example, the 4-point odd part (Figure 1a) has eeeo1
and eeeo0 as the inputs and des1 and des3 as the outputs.
Each input needs to be multiplied by 36 and 83 before being
added or subtracted. The multiplication by 36 can be imple-
mented as x × 36 = x � 5 + x � 2. The multiplication by
83 can be implemented as x×83 = (x � 6+x � 4)+(x �
1+x), which needs at least 2 addition/subtraction (add) stages
to implement. The critical path of the 4-point odd part then
includes a) at least 2 add stages for multiplications by 36 and
83 and b) 1 add stage for adding 2 branches of multiplications
by 36 and 83. Therefore, the minimum critical path length of
the 4-point odd part is 3 adds. Since this is longer than that
of the 4-point even part (1 adds), the minimum critical path
length of the 4-point DCTs using the butterfly structure is the
total of that of the odd part and 1 add stage for the butterfly,
which becomes 4 adds.

Figure 3 illustrates the proposed critical-path-optimization
(CPO) implementation for the HEVC transform algorithms.
Table 2 shows their operation counts and critical path lengths.
Our algorithms achieve the minimum critical path lengths for

Table 3. Comparison of resource consumption and critical
path length among different HEVC 1-D transform algorithms.
Types# HM& [11] [12][13]≈ [14] [15] [16] Pr∗

4-p DCT 44/8 - - 16/4 16/5 14/5 14/5 14/4
8-p DCT 160/9 72/7 60/6 60/6 56/6 50/6 50/6 54/5
16-p DCT 616/10 - - 160/9 232/8 186/8186/8 198/6
32-p DCT 2424/11 - - - 1080/9 666/8682/9 710/7
4-p DST 74/9 - - - 49/7 - - 31/4

Each cell contains resource consumption/critical path length of an algo-
rithm, measured by addition/subtraction count. #: Transform types; &:
The algorithms used in the HEVC reference software; ≈: The design
neglects some complex parts of the transforms; ∗: The proposed algo-
rithms; -: the algorithm does not support the corresponding transform.

the transform algorithms using the PB structure.

4. DISCUSSIONS AND CONCLUSIONS

Table 3 and Figure 4 show that our transforms achieve the
shortest critical paths and consume relatively small resources
compared to those of the reported HEVC 1-D transform algo-
rithms [11–16] and the original algorithms used in the HM.

As can be seen from Table 3, our DCT algorithms require
critical path lengths of 57% while consuming resources of
32% of those of the PB algorithms in the HM on average.
Our 4-point DCT is the best among the reported designs as
it requires a critical path length of 80% of that of [14–16],
while consuming a resource amount of 88% of that of [14]
or equal to that of [15, 16]. Compared to [13], which uses
transform approximation, our 4-point DCT requires 88% op-
eration count while having the same critical path length. Our
DST also achieves a critical path of 57% while consuming
only 63% resource compared to those of [14].

Our 8-, 16- and 32-point DCTs require 5, 6 and 7 adds in
their critical paths, which are 17%, 25% and 22% less than
that of the best critical path competitors for the 8-point DCT
[12–16], for the 16-point DCT [14–16] and for the 32-point
DCT [15], respectively. Our operation counts are also smaller
than that of most of the designs. However, they are from 6%
to 8% more than that of the least-resource-consumption de-
signs [15] for the 8-, 16- and 32-point DCTs and [16] for the
8- and 16-point DCTs.

In this paper, we proposed a set of implementation algo-
rithms for the HEVC transforms including the 4 × 4, 8 × 8,
16×16, and 32×32 DCTs and 4×4 DST. Compared to the re-
ported algorithms, our algorithms achieve around 20% shorter
critical paths while consuming relatively small numbers of
additions and shift operations. Shorter critical path leads to
shorter processing time, faster speed, and subsequently higher
throughput. Hardware designs when applying our proposed
algorithms can increase their throughput by 20% while main-
taining a reasonable resource consumption compared to when
applying other implementation algorithms.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20142108

5. REFERENCES

[1] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine
transform,” IEEE Transactions on Computer, vol. C-23,
no. 1, pp. 90-93, Jan. 1974.

[2] ITU-T and ISO/IEC, “ITU-T Rec. H.264 and ISO/IEC
14496-10:2009: Advanced Video Coding,” Mar. 2010.

[3] G.J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand,
“Overview of the High Efficiency Video Coding (HEVC)
Standard,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 22, no. 12, pp. 1649-1668,
Dec. 2012.

[4] C. Yeo, Y.H. Tan, Z. Li and S. Rahardja, “Mode-
Dependent Transforms for Coding Directional Intra Pre-
diction Residuals,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 4, pp. 545-
554, Apr. 2012.

[5] Y.J. Ahn, W.J. Han, and D.G. Sim, “Study of Decoder
Complexity for HEVC and AVC Standards based on tool-
by-tool comparison,” in Proceedings of the SPIE, Ap-
plications of Digital Image Processing XXXV, vol. 8499,
article id. 84990X, Oct. 2012.

[6] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC
Complexity and Implementation Analysis,” IEEE Trans-
actions on Circuits and Systems for Video Technology,
vol. 22, no. 12, pp. 1685-1696, Dec. 2012.

[7] G. Bjøntegaard, “Calculation of Average PSNR Differ-
ences between RD Curves,” ITU-T Q6/16 Doc. VCEG-
M33, Apr. 2001.

[8] M. Budagavi and V. Sze, “Unified forward+inverse trans-
form architecture for HEVC,” in Proceedings of the
19th IEEE International Conference on Image Process-
ing (ICIP), pp. 209-212, Sep.-Oct. 2012.

[9] M. Budagavi, A. Fuldseth, G. Bjøntegaard, V. Sze and
M. Sadafale, “Core Transform Design for the High Effi-
ciency Video Coding (HEVC) Standard,” IEEE Journal
of Selected Topics in Signal Processing, vol. 7, no. 6, pp.
1029-1041, Dec. 2013.

[10] P.-T. Chiang and T.S. Chang, “A reconfigurable inverse
transform architecture design for HEVC decoder,” IEEE
International Symposium on Circuits and Systems (IS-
CAS’13), pp. 1006-1009, May 2013.

[11] M. Martuza and K. Wahid, “A cost effective implemen-
tation of 8 × 8 transform of HEVC from H.264/AVC,”
Proceedings of 25th IEEE Canadian Conference on Elec-
trical and Computer Engineering (CCECE ’12), pp. 1-4,
May 2012.

[12] R. Rithe, C.-C. Cheng, and A.P. Chandrakasan, “Quad
Full-HD Transform Engine for Dual-Standard Low-
Power Video Coding,” IEEE Journal of Solid-State Cir-
cuits, vol. 47, no. 11, pp. 2724-2736, Nov. 2012.

[13] F. Belghith, H. Loukil, and N. Masmoudi, “Free multi-
plication integer transformation for the HEVC standard,”
in Proceedings of the 10th IEEE International Multi-
Conference on Systems, Signals & Devices (SSD), pp. 1-
5, Mar. 2013.

[14] C. Fan, F. Li, G. Shi, L. Zhou, and H. Yang, “A
Low Complexity Multiplierless Transform Coding for
HEVC,” in Proceedings of 13th Pacific-Rim Conference
on Multimedia, pp. 578-586, Dec. 2012.

[15] M. Tikekar, C.-T. Huang, C. Juvekar, V. Sze, and
A.P. Chandrakasan, “A 249-Mpixel/s HEVC Video-
Decoder Chip for 4K Ultra-HD Applications,” IEEE
Journal of Solid-State Circuits, vol. 49, no. 1, pp. 61-72,
Jan. 2014.

[16] P.K. Meher, S.Y. Park, B.K. Mohanty, K.S. Lim, and
C. Yeo, “Efficient Integer DCT Architectures for HEVC,”
IEEE Transactions on Circuits and Systems for Video
Technology, vol. 24, no. 1, pp. 168-178, Jan. 2014.

[17] JCT-VC, “HM Reference Software,” available
online: https://hevc.hhi.fraunhofer.de/
svn/svn?HEVCSoftware/

[18] Y. Voronenko and M. Puschel, “Multiplierless multi-
ple constant multiplication,” ACM Transaction on Algo-
rithms, vol. 3, no. 2, pp. 11, May 2007.

[19] A. Fuldseth, G. Bjøntegaard, M. Budagavi and V. Sze,
“CE10: Core transform design for HEVC,” JCTVC-
G495, Nov. 2011.

[20] T.T.T. Do and T.M. Le, “High Throughput Area-
Efficient SoC-Based Forward/Inverse Integer Transforms
for H.264/AVC,” IEEE International Symposium on Cir-
cuits and Systems (ISCAS’10), pp. 4113-4116, May 2010.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20142109

