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ABSTRACT

Image restoration often requires the minimization of a con-
vex, possibly nonsmooth functional, given by the sum of a
data fidelity measure plus a regularization term. In order to
face the lack of smoothness, alternative formulations of the
minimization problem could be exploited via the duality prin-
ciple. Indeed, the primal-dual and the dual formulation have
been well explored in the literature when the data suffer from
Gaussian noise and, thus, the data fidelity term is quadratic.
Unfortunately, the most part of the approaches proposed for
the Gaussian are difficult to apply to general data discrepancy
terms, such as the Kullback-Leibler divergence. In this work
we propose primal-dual methods which apply to the mini-
mization of the sum of general convex functions and whose
iteration is easy to compute, regardless of the form of the ob-
jective function, since it essentially consists in a subgradient
projection step. We provide the convergence analysis and we
suggest some strategies to improve the convergence speed by
means of a careful selection of the steplength parameters. A
numerical experience on Total Variation based denoising and
deblurring problems from Poisson data shows the behavior
of the proposed method with respect to other state-of-the-art
algorithms.

Index Terms— Primal-Dual method, e—subgradient
projection method, variable steplengths, Total Variation,
Kullback-Leibler divergence.

1. INTRODUCTION

In the Bayesian framework, image reconstruction problems
can be formulated as a constrained convex minimization prob-
lems of the form

min f (x) (1)

where X C R” is the constraints set and the objective func-
tion can be written as

f(x) = fo(x) + f1(Ax)
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The function fj(x) measures the data discrepancy and should
be chosen according to the noise statistics: in particular, when
the data suffer from Poisson noise, the Maximum Likelihood
principle leads to the Kullback—Leibler divergence

fox)=>"gi logﬁ + (Hx)i +b—g; (2)
i=1 v

where g € R" is the observed image, H € R™*™ is the imag-
ing matrix representing the image acquisition system and b is
a nonnegative constant background term. On the other side,
f1(Ax), where A € R™*" is aregularization term which en-
forces suitable properties on the solution of (1). Typically, to
preserve the edges in the solutions of (1), f1(Ax) represents
the discrete, nonsmooth, Total Variation (TV) functional

fi(Ax) =B [ Ax|, A; e ROT )

i=1

where [ is a positive regularization parameter, || - || denotes

the Euclidean norm and A = (AT A7 AZ)T rep-
resents the first order finite difference operator. In order to
face the lack of smoothness in the objective function of (1),
the primal—dual formulation can be introduced via the duality
principle, yielding the following saddle point problem

min max fo(x) + (Ax,y) — f1(y) “)
xeX y

where (-,-) represents the inner product of two m vec-
tors and f; is the convex conjugate of fi, ie. fi(y) =
maxx(X,y) — f1(x). A key property of f;(y), which is
crucial for our analysis, is the boundedness of its domain.

By defining the dual function d(y) = mingex fo(x) +
(Ax,y) — fi(y), the dual formulation of (1) can be de-
rived: maxy d(y). Primal-dual and dual formulations with
the related methods have been deeply analyzed in the re-
cent literature for the Gaussian noise case (see for example
[1, 2, 3, 4, 5, 6]). However, the most part of such methods
can not be directly applied when the data discrepancy is the
Kullback—Leibler divergence. Indeed, when fo(x) is defined
as in (2), the difficulty is that there is no explicit expression
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for the dual function and, except in case of denoising prob-
lems when H reduces to the identity matrix, there is no closed
formula to compute the resolvent operator of fj

(I +0050)" (x) = argmin fo(z) + ol — x|

forgivenx € X,0 € R, 6 > 0.

For the reasons above, in this paper we consider the sad-
dle point problem (4), focusing on a primal—dual algorithm
whose iteration requires only to compute an approximate sub-
gradient of fo(x). This method has been proposed in our
previous work [7] as a generalization of the hybrid gradient
method proposed in [4] for the Gaussian case, providing the
related convergence analysis. In this paper we state a stronger
convergence result under very similar assumptions, providing
also a convergence rate estimate.

1.1. Notation and basic definitions

Here and in the following || - || denotes the Euclidean norm of
a vector and (-, -) the corresponding inner product. Moreover,
Px (z) indicates the orthogonal projection of z € R™ onto the
set X, i.e. Px(z) = arg minye x ||x — z|| and the diameter of
a set X is denoted by diam(X ) = maxx zex ||x — z]|.

The domain of a function f : R™ — R U {00} is the set

dom(f) = {x € R" : f(x) # o0}

We recall also the definition of the e-subdifferential of a con-
vex function f at x, which is the following set

Ocf(x) ={ueR": f(z)— f(x) > (u,z—x) —€eVz € R"}
&)
for a given € > 0. An e-subgradient of f at x is any element
of the set 0. f(x). Due to obvious space limitation reasons
we address the reader to [8, 9] for the basic properties of the
e-subgradient.
The e-subgradient projection method [10, 11, 12] for the so-
lution of problem (1) consists in the following iteration

x(k+1) — PX(x(k) _ Gku(k)) (6)

where ul®) e aekf(x(k)), for suitably chosen ¢, > 0 and
(‘)k > 0.

2. ALGORITHM DESCRIPTION

The primal—dual hybrid gradient (PDHG) algorithm [7] con-
sists in the following iteration

y(k+1) _

(kD)

(I +71.0f5) Y y® + 7, Ax®) (1)
Px (x®) — 0, (g™ + ATy(E+Dy) (8)

where x(¥ € X, y(© ¢ dom(f;), g € 95, fo(x*),
0r > 0 and {0}, {7} are given primal and dual positive
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steplength sequences. The PDHG method has been proposed
first in [4] to solve unconstrained Total Variation based im-
age restoration problems in presence of Gaussian noise and
its very good practical performances have been observed by
several authors [3, 2]. As observed in [4], the main strength of
PDHG resides in exploiting variable steplengths 6 and 7: in
particular, using a large primal stepsize in the initial iterates,
decreasing its value as the iterations proceed, while adopt-
ing increasing dual stepsizes, leads to obtain a fast initial and
asymptotic approaching to an optimal solution.

It is worth stressing that in case of Total Variation regulariza-
tion, the practical implementation of the dual updating for-
mula (7) reduces to an orthogonal projection of the vector
y®) 4 7, Ax(¥) onto a cartesian product of n Euclidean balls,
which is very easy to compute. On the other side, when fj(x)
is differentiable, one may choose g*) = V fo(x(*)) in (8),
while the primal domain X is typically defined as the non-
negative orthant of R”, X = {x € R" : x > 0}, so that
the projection is straightforward. More general operators are
considered for example in [13].

A general convergence analysis of PDHG has been developed
in [7], where, under suitable assumptions, it is proved that the
distance between the iterates and the set of the solutions of
(1) converges to zero. The key point of this analysis consists
in the interpretation of the scheme (7)—(8) as a special case of
an e-subgradient projection method. The basic result for this
interpretation is the following lemma.

Lemma 1 [7]Lety(k+1) defined as in (7). Then, ATy(k+1) c
Do, (f1 0 A)(x®)), where o, = f1(Ax®)) + fr(y*+D) —
<Ax(k)7 y(kH))- If, in addition, there exists a positive num-
ber D such that diam(dom f;) < D, then o}, < (274) "1 D2

As a consequence of the previous result, we obtain that
u) = g® 4 ATy € g, f(xM) ©)

where €, = dy + 0. Following this idea, in the next section
we prove the convergence of the whole sequence generated
by PDHG to a solution of (1), providing also a convergence
rate estimate.

3. CONVERGENCE ANALYSIS

For the e-subgradient projection method (6) the following
convergence result holds .

Theorem 1 [10, Theorem 8] Let {x*)} be the sequence gen-
erated by iteration (6) applied to problem (1). Assume that the
set of the solutions of (1) is nonempty and bounded and that
limg o0 € = 0. Moreover, assume that there exists p > 0
such that |[u®)|| < p for all k and the steplength sequence
satisfies

i@k:oo, i92<oo, iek9k<oo (10)
k=0 k=0 k=0
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Then, the sequence {x(k)} converges to a solution of (1).

Based on the previous result and on (9), the convergence of
the primal—dual scheme (7)—(8) can be stated as follows.

Corollary 1 Let {x*)} be the sequence generated by itera-
tion (7)-(8) applied to problem (4). Assume that there exists
p > 0 such that ||g™)|| < p for all k and the steplength se-
quence satisfies

9k:(9(1), i = O(kP) %<p§1. (11)

kpr
Moreover, assume that the set of the solutions of (1) is
nonempty and bounded and that 6, converges to zero at least
as =. Then, the sequence {x k)} converges to a solution of

.

Under the same assumptions of Theorem 1, we can give the
following convergence rate estimate, whose proof is based on
the results in [11].

Theorem 2 Let {x®)} be the sequence generated by itera-
tion (6). Assume that the hypotheses of Theorem I are satis-
fied. Then, there exists a subsequence {x“*)} of {x®)} such
that

-1

FEU) — f(x) < (12)

Ly
>0
j=0
where xX* is a solution of (1).

Proof. For all k let us define z(*) = x(*) — g, u(*). By the
properties of the projection operator we have that

D — x| = [P () = Px (x™))]
< 2 —x®) (13)
= Ou®™] < Orp (14)
Let x be any solution of (1): then, we have
0ip” + 1x™) = x|* — [x*+D — x|?
> D — x® 12 4 [[x®) = x||* — [ E D — x|

— o(x®) _ x,x®) _ x(k+D)
=2(x®) —x,x®) —z®)) pox®) —x 2 —x
=20, (u® x®) —x) 4 2(x®) — 2R Z*F) _x

(k+1)>

(k+1)> +

¥ <100

method K time(s.) ek
CP 110 4.36 0.0027468
PDHG 188 4.97 0.0005846
PID 119 7.48 0.0013933
LCR fF<1
method K time(s.) eX
CP 1652 62.83 1.2329¢-4
PDHG 943 26.06 8.9046¢-6
PID 398 22.68 8.3888e-5
X <100
method K time(s.) ek
PID,y = 2 36 1.37 0.042813
PID, v = § 101 4.06 0.024150
PDHG 865 7.19 0.021812
micro <1
method K time(s.) eX
PID,v =2 3509 134.03 0.011424
PID, v = § 382 14.82 0.011232
PDHG 2090 17.17 0.013842
Table 1. Numerical results.
By defining v, = f(x®)) — f(x), this results in

205y < ||x®) —x||2 = [|x*+D) —x||2 420, ex +507p* (15)

By summing inequalities (15) for £ = 0,1,--- , N we obtain

N
2 Z Oy <
k=0

x0 — X||2+
N N
+2 Z Orer + 5p° Z 9%
k=0 k=0

which implies that Z;ozo 0xvr < oo. Then, proceeding as in
the proof of Theorem 2 in [11], the estimate (12) follows. [

The previous result gives a quite pessimistic convergence rate
estimate of the objective function value: indeed, when the
primal steplength is chosen as in (11) with p = 1, we can
only say that there exists a subsequence of {f(x(“*))} of
{f(x®))} such that

+2(z*) — x,zF) — X(k+1)>
=20, (u® x®) —x) 4 2(x®) — z*) Z(F) _ x(k+1)y o FxE)Y — f(x*) < 1

1202 — x, 20 py(z0)) ~ log(k)
> 29k<u(k)7 x(F) X) + 2<X(k) - Z(k), 2" — X(k+1)> However, as illustrated in the next section, the practical per-
=20, (u® x®) — x) 4 2(xF) — 2K 7K _ x(K)y formances are significantly better than this theoretical esti-

2(x®) g0 x (k) _ (k1)) mate.
> 20, (u®) x(F) — x) — 2||x*) — z*))|2 ¢

_2||x(k) ) ||||X (k) (k+1)H 4. NUMERICAL EXPERIENCE

k k
> 20),(u ™), x —x) — 492 ||U-( )”2 This section is devoted to numerically evaluate the behavior
> 20, (f (x ) f(x) =€) — 462 p° of PDHG method for TV restoration of images corrupted by
978-1-4799-5751-4/14/$31.00 ©2014 |[EEE 4158 ICIP 2014



Poisson noise. The numerical experiments have been per-
formed in Matlab environment, on a server with a dual Intel
Xeon QuadCore E5620 processor at 2,40 GHz, 12 Mb cache
and 18 Gb of RAM.

We consider a denoising and a deblurring problem, denoted
by LCR and micro respectively. In both cases the Poisson
noise has been simulated by the Matlab imnoise function.
The features of the two test problems are the following:

e LCR: the original image is an array 256 x 256 [14],
consisting in concentric circles of intensities 70, 135
and 200, enclosed by a square frame of intensity 10, all
on a background of intensity 5; 3 is equal to 0.25;

e micro: the original image is the confocal microscopy
phantom of size 128 x 128 [15]; its values are in the
range [0, 70] and the total flux is 2.9461 10; the simu-
lated data are obtained by a Gaussian PSF and the back-
ground term b in (2) is set to zero; 3 is equal to 0.09.

For both test-problems we compute the solution z* of (1)-(2)-
(3) by running 100000 iterations of the PIDSplit method [16].

Then, we evaluate the progress toward the ideal solution at

. ) (k) _yox
each iteration in terms of the I, relative error e = w

and of the distance f* = f(x(*)) — f(x*) from the minimum
value.

For the denoising test-problem LCR, we compare PDHG with
two methods: the first one is PIDSplit algorithm [16, 17],
based on a very efficient alternating direction multiplier
method and depending on a positive parameter y; the sec-
ond one is the Algorithm 1 in [2] (CP), a general primal-dual
scheme which depends on two parameters, o and 7, satis-
fying o7L? < 1, with S]|A|| < L. Since applying CP to
the deblurring case without approximating the resolvent op-
erators with an inner loop requires a reformulation of the
primal problem (see [18, 19, 20]), we apply it only to the
denoising problem. All methods have been initialized with
x(®) = max(g,n), where the maximum is intended compo-
nentwise and 7; = 0 for g; = 0, 7; = ming,o(g) otherwise.
The initial guess for the dual variables has been set equal to
zero. By a trial and error procedure, we choose for the three
methods optimized parameters: in particular for PDHG the
optimized sequences for the steplengths are 7, = 0.44-0.01%

and 0y = gz gors; While for PIDSplit 7 = 5 and for CP

7 = 5. In Figure 1 we show in log-scale the relative error e*

and the distance from the minimum value f* with respect to
the computational time for 3000 iterations of PDHG , PID-
Split and CP.

For the deblurring test-problem micro, we compare the re-
sults obtained by PDHG and PIDSplit methods. The initial
setting is the same of the denoising, except for the primal
variable equal to x(?) = max(g, 0). The optimal sequences
for PDHG are 7, = 0.9 + 0.01k, ) = gz35575=a5 While
for PIDSplit we use two values for -, i. e. 3 and %. Figure

2 show in log—scale the relative error e and the distance f*
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sessssenes CP, 725
—— PDHG
102 L PIDSpIit, 7= 1/p

srmeeeee CP, 125
— PDHG |
-------- PIDSpIit, 7= 1/p ||

0 50 100 150 0 50 100 150

Fig. 1. Test-problem LCR: behavior of e* (left) and f* (right) with
respect the computational time in seconds.

PDHG
- PIDSplit, y = 5/
PIDSplit, y = 50/p

PDHG |
PIDSpit, v = 5/p ||
PIDSplit, 7 = 50/p ||

0 50 100 0 50 100

Fig. 2. Test-problem micro: behavior of e* (left) and f* (right) with
respect the computational time in seconds.

from the minimum value with respect to the computational
time for 3000 iterations of PDHG and PIDSplit. In Table 1
we report the number of iterations K and the computational
time needed to satisfy f% < p, for u = 100 and p = 1, and
the corresponding relative error e for both test-problems.
We observe that the behavior of PDHG is comparable to other
methods; the choice of the steplength sequences is crucial for
its effectiveness, as well as the choice of «y for PIDSplit and of
7 for CP. Furthermore the comparison between the methods
shows that a fast convergence for the relative error e* often
does not match with an analogous behavior for f k because
of the different trajectories to go from x(*) to x*.
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