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ABSTRACT

We proposed a novel deep convolutional neural network

based species recognition algorithm for wild animal classi-

fication on very challenging camera-trap imagery data. The

imagery data were captured with motion triggered camera

trap and were segmented automatically using the state of the

art graph-cut algorithm. The moving foreground is selected

as the region of interests and is fed to the proposed species

recognition algorithm. For the comparison purpose, we use

the traditional bag of visual words model as the baseline

species recognition algorithm. It is clear that the proposed

deep convolutional neural network based species recognition

achieves superior performance. To our best knowledge, this is

the first attempt to the fully automatic computer vision based

species recognition on the real camera-trap images. We also

collected and annotated a standard camera-trap dataset of 20

species common in North America, which contains 14, 346

training images and 9, 530 testing images, and is available to

public for evaluation and benchmark purpose.

Index Terms— Species recognition, wild animal moni-

tor, image classification, deep convolutional neural networks,

large scale learning

1. INTRODUCTION

Our wildlife populations are increasingly imperiled as human

actions are altering natural systems through aggressive re-

source acquisition and landscape changes. Furthermore, the

urbanization of our society has decreased the personal inter-

actions between humans and wildlife with declines in the pop-

ularity of many outdoor recreational activities, such as hunt-

ing and fishing [1]. The problematic result is that our soci-

ety is causing more problems for wildlife while at the same

time becoming less concerned about the well being of wildlife

species and our natural systems. This creates significant hur-
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dles in effective management of natural resources and protec-

tion of wildlife species.

The geographic scale of these conservation, ecological,

and environmental issues is beyond the capability of any sin-

gle study to tackle, although numerous studies have docu-

mented the phenomenon at selected sites [2]. One exception

is the bird-watching networks, including Breeding Bird Sur-

vey [3], E-bird [4], and Christmas Bird Counts [5], which

engage millions of citizens across the country today to re-

port local population trends of bird species [6]. The result-

ing datasets on bird abundance and distribution have been the

backbone of many important continental conservation pro-

grams [7, 8]. These efforts have successfully recorded the

spread of invasive species [9], identified critical bird species

in need of conservation actions and saved a number of species

from extinction [10].

Unfortunately, most mammalian wildlife species, such

as lion, deer, and tiger, are too shy to be directly observed

and tracked by citizens. During the past decades, engineers

and wildlife researchers have developed various technologies

for professionals to monitor individual mammals, includ-

ing very high frequency (VHF) radio tracking [11], satellite

tracking [12], and Global Positioning System (GPS) track-

ing [13, 14, 15], wireless sensor networks [16, 17, 18], and

animal-mounted video monitoring systems [19]. However,

these efforts have been mostly carried out on a relatively

small number of wildlife species by professional wildlife re-

searchers, over a short period of time (often in the range of

a few hours, days, or weeks), and over small geographical

areas. Furthermore, camera and sensor data collected by dif-

ferent individuals and research groups are scattered in space

and time, represented in various forms, and isolated from

each other.

With technological advances in hardware and embedded

computing, existing camera-trap technologies for wildlife

monitoring (e.g. Reconyx camera systems [20]) have ma-

tured to where they are commercially available at a reason-

able cost, rapidly deployable, easy to maintain, and therefore

to be practically used by a large number of non-professional
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Fig. 1: The framework of eMammal cyber-infrastructure.

citizens. With the help of a group volunteers, we have been

able to employed camera traps at around 1, 000 locations

to capture the imagery data of wild animals so that we can

analyze their behaviors and monitor the population. This

on-going eMammal project has been developing a citizen

scientist-based camera trap monitoring cyber-infrastructure

to collect large-scale data on animal populations, species

richness and diversity, and engage the public in both nature

and scientific exploration.

The eMammal project leads to an biological informatics

cyber-infrastructure which brings together citizen scientists

and wildlife professionals to collect, analyze, and manage

massive camera-trap data for collaborative wildlife research

at large scales. Figure 1 shows the basic framework of eMam-

mal cyber-infrastructure. As shown in Figure 1, the imagery

data captured by camera trap need to be annotated with in-

formation including the animal location, animal category, and

the moving speed. Due to the scale of the imagery data cap-

tured by the 1, 000 camera traps, manually labeling these im-

agery data is formidable. We therefore resort to computer

vision algorithm to annotate these wild animal imagery data

automatically.

With our previous work Ensemble Video Object Cut

(EVOC) [21], we can segment out the object of interests, i.e.

the wild animals. Therefore, to make the aforementioned

eMammal platform an automatic tool for biologists, the key

problem is visual species recognition. That is we need to

recognize the animal category of the current image sequence

captured by the camera trap so that we can analyze behavior

patterns and populations of different species. We therefore

proposed a novel deep convolutional neural network based

species recognition algorithm for wild animal classification

on these very challenging camera-trap imagery data. For

the comparison purpose, we use the traditional bag of visual

words model [22, 23] as the baseline species recognition al-

gorithm. As shown in Section 4, it is clear that the proposed

deep convolutional neural network based species recognition

achieves superior performance. To our best knowledge, this is

the first attempt to the fully automatic computer vision based

species recognition on the real camera-trap images. We also

collected and annotated a standard camera-trap dataset of 20

species common in North America, which contains 14, 346

training images and 9, 530 testing images, and is available to

public for evaluation and benchmark purpose.

2. RELATED WORK

The deep learning algorithms [24, 25, 26] have shown their

advantages in various tasks including Natural Language Pro-

cessing (NLP) [27, 28], speech recognition [29] and computer

vision [30, 31]. With great performances and the capabil-

ity suitable for large scale learning, the deep learning algo-

rithms provide a promising path to problems that are very dif-

ficult to traditional machine learning algorithms such as vi-

sual recognition. Recently, the deep learning based algorithm

[30] achieved a dominant win over traditional algorithms in-

cluding SVM, boosting algorithms, and multiple kernel learn-

ing in the Large Scale Visual Recognition Challenge 2012

(ILSVRC2012) [32]. However, there are still many issues

in deep learning algorithms need to be further investigated.

For example, there are several variants of deep learning algo-

rithms and the performances of these algorithms vary drasti-
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cally for different tasks. Currently there are no through inves-

tigation and summary on the comparisons of these algorithms.

Besides, current Restricted Boltzman Machine (RBM) based

deep learning algorithms have a very small receptive field,

which works best for small input images such as 30 by 30

handwritten digit images. Considering all of the aforemen-

tioned factors, we mainly applied the deep convolutional neu-

ral network [30] with task specific variation for our species

recognition purpose.

3. VISUAL SPECIES RECOGNITION ON NOISY

CAMERA-TRAP DATA USING DEEP CNN

The imagery data captured by the camera traps are image

sequences triggered by a motion sensor with the sequence

length ranging from 6 frames to 50 frames. Our previous

work, EVOC [21] is first applied to the image sequence to

segment out the moving foreground. The tight bounding box

around the segmented region are selected as the Region of In-

terest (ROI). We can then treat the species recognition prob-

lem as the image classification on the ROIs. Some sample

ROI cropped out of the camera-trap images are shown in Fig-

ure 2.

Fig. 2: The sample ROIs cropped out of the camera-trap im-

ages using EVOC [21].

Since the EVOC based foreground segmentation algo-

rithm cannot generate perfect aligned bounding box, the

image classification algorithm has to tolerate the imprecision

of the ROIs such as part clipping or very loose ROI. We

therefore resort to two image classification algorithms: (1)

Bag of visual Words (BOW) model based image classification

algorithms [22, 23]; (2) Deep Convolutional Neural Network

(DCNN) based image classification algorithms. These two

image classification algorithms both have their own advan-

tages and disadvantages. The BOW image classification

algorithm is simple and quite robust to deformation and part

clipping, but it achieves only suboptimal results. The DCNN

based image classification algorithm [30] can achieve su-

perior performance over most of the state-of-the-art image

classification algorithms [32], but requires large amount of

labeled training data, even if the data augmentation technique

[30] is applied.

Fig. 3: The structure of the DCNN used for species recogni-

tion.

Considering the amount of training data available, we de-

signed a DCNN with 3 convolutional layers and 3 max pool-

ing layers. The convolutional layer has a convolutional kernel

with a size of 9 × 9 ,while pooling layer has a kernel with

a size of 2 × 2. The input layer size is 128 × 128. In the

first convolutional layer,which apply 2-D convolution to the

128× 128 input layer,we can get a 120× 120 output matrix.

Since we have 32 kernels in the first convolution layer,we can

get 32 out matrices. Then we apply 2 × 2 max pooling. That

is we use the highest value in a 2 × 2 block to represent that

block. Then after pooling we have 32 60 × 60 matrices as

the output of the first layer, which are the input of the sec-

ond convolution layer. For each kernel in the second layer,

we apply convolution to each input matrix and take average

to get a output matrix. The second layer outputs 64 52 × 52

matrices, pooling to 64 26 × 26 matrices. The 3rd pooling

layer outputs 32 9 × 9 matrices and we make it into a 2592

dimensional vector. After that is a fully connected layer and

a soft max layer. The soft max layer have 20 neurons and we

can use the max output among these 20 neurons to determine

the label of input image. The data augmentation step [30] is

also used during our training stage.
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Table 1: Species Recognition Performance Comparison on Camera-trap Data.

Method Agouti Peccary Paca R-Brocket Deer W-nosed Coati Spiny Rat Ocelot R-Squirrel Opossum Bird spec

BOW 0.041 0.108 0.298 0.01 0.333 0.146 0.398 0.028 0.296 0.011

DCNN 0.13 0.122 0.187 0.02 0.243 0.05 0.224 0.038 0.147 0.001

Method Tinamou W-Tail Deer Mouflon R-Deer Roe Deer Wild Boar R-Fox Euro Hare Wood Mouse Coiban Agouti

BOW 0.397 0.69 0.647 0.746 0.038 0.246 0.001 0.143 0.746 0.055

DCNN 0.298 0.5 0.71 0.82 0.046 0.171 0.001 0.02 0.873 0.045

4. EXPERIMENTAL RESULTS

4.1. Camera-trap Dataset for Species Recognition Bench-

marking

We collected and annotated a standard camera-trap dataset

of 20 species common in North America, which contains

14, 346 training images and 9, 530 testing images, and is

available to public for evaluation and benchmark purpose.

The 20 species are: Agouti, Collared Peccary, Paca, Red

Brocket Deer, White-nosed Coati, Spiny Rat, Ocelot, Red

Squirrel, Common Opossum, Bird spec, Great Tinamou,

White Tailed Deer, Mouflon, Red Deer, Roe Deer, Wild Boar,

Red Fox, European Hare, Wood Mouse, and Coiban Agouti.

The training and testing images are randomly sampled from

the total collection of images including color images, gray

images, and infrared images with resolutions raging from 320

by 240 to 1024 by 768. Each image icontains only one type

of animal out of the aforementioned 20 categories. The ac-

curacy on the testing images are used to benchmark different

algorithms.

4.2. Species Recognition Baseline using BOW based Im-

age Classification

We follow the famous bag-of-words model to do the classi-

fication. First, we divide the whole image into overlapping

small blocks,i.e.8 by 8 block. The blocks are the ?words?.

We can extract features to represent the block. Putting fea-

tures from all images together, we can get a ?vocabulary? of

visual words. Then according to the vocabulary, each im-

age have a histogram of occurrence counts of words. We use

the histogram to represent the image, and use linear SVM as

the classifier. Since this representation ignore the spatial re-

lation between image blocks, it is tolerance to large defor-

mation. We use 8 by 8 blocks as visual words get a block

every 3 pixels. For each block ,a 128 dimensional SIFT fea-

ture was extracted to represent the patch. We random sampled

1000000 features from all the training image and train a code

book using k-means clustering. Here is the result of the BoW

model with different code size: for K = 1000, 2000, 3000,

the accuracies of the BoW model are 33.192%, 33.507%, and

33.485% respectively.

4.3. Species Recognition Results of DCNN and Bow for

20 species

With on the collected camera-trap dataset, we compared the

BOW model with our DCNN algorithm for species recogni-

tion. The performance comparison is shown in Table 1. The

overall species recognition accuracy of the BOW is 33.507%

and the overall species recognition accuracy of the DCNN is

38.315%. We also want to emphasize that the learning capac-

ity of the DCNN is very high and therefore the performance of

the DCNN can be further improved if more training data are

available. From this comparison we can find that the proposed

DCNN outperforms the traditional BOW model. Although

the current performance on this very challenging dataset (as

shown in Figure 2) cannot meet the fully automatic require-

ments, we can still use the DCNN algorithm to select ambigu-

ous data for annotation, which can alleviate the burden of the

experts to large extent.

5. CONCLUSION AND DISCUSSION

We proposed a novel DCNN based species recognition algo-

rithm. On the very challenging real camera-trap imagery data

set, our DCNN based species recognition algorithm outper-

forms the traditional BOW based species recognition algo-

rithm and show promising results. Although the current per-

formance has not meet the requirements of full automation.

But the most confident recognition results can already allevi-

ate the burden of the annotation experts to a large extent. With

more camera-trap data collected, we expect that the DCNN

based species recognition algorithm can improve quickly due

to its large learning capacity and finally achieve the goal of

automatic species recognition for camera-trap data.
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