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ABSTRACT 

 

This paper presents an efficient VLSI architecture of intra 

prediction for 8Kx4K HEVC decoder. It supports all 35 

intra prediction modes and prediction sizes ranging from 

4x4 to 64x64. This works proposed a Cyclic SRAM Banks 

based Parallel Reference Sample Fetching (CSB-PRSF), 

which guarantees enough reference samples for prediction 

and reduces the number of registers used for storing 

reference samples. To guarantee high throughput, 16 pixels 

are predicted by 4x4 Block Based Pipelining, and 

dependency between neighboring blocks is eliminated by 

Hybrid Data Forwarding and Block Reordering.  

This architecture is synthesized using 90nm techno- 

logy and the maximum working frequency is 469 MHz, with 

72.1K gates area. Running at 397MHz, the architecture can 

support 4320p@120fps HEVC intra decoding, with full 

modes and full sizes. 

 

Index Terms— HEVC decoder, intra prediction, VLSI 

architecture, 8K UDTV 

 

1. INTRODUCTION 

 

High Efficiency Video Coding (HEVC) [1][2] is the 

emerging video coding standard developed by Joint 

Collaborative Team on Video Coding (JCT-VC). It is aimed 

at 50% bit rate reduction compared with H.264 standard. 

Intra prediction plays an important role in HEVC, saving 

about 22%-36% bitrate. Meanwhile, the computational 

complexity is increased by some critical changes. Firstly, 

the maximum block size for intra prediction is 64x64 in 

HEVC instead of 16x16 in H.264. Secondly, the number of 

intra prediction modes is 35 in HEVC instead of 10 in H.264.       

In HEVC, frames are divided into Coding Units (CU) 

and each root CU can be recursively divided into 1 or 4 

smaller CUs. Each leaf CU will be processed by Prediction 

Units (PU) and Transform Units (TU). PU ranges from 

64x64 to 4x4 while TU from 4x4 to 32x32. If a CU is 

encoded in intra mode, each TU corresponds to an intra 

prediction block with the corresponding PU’s prediction 

mode. Therefore, the blocks size is from 4x4 to 32x32 and 

there’re 35 prediction modes in intra prediction. 

Several designs have already been proposed for HEVC 

intra prediction hardware design. Li [4] proposed VLSI 

architecture for 4x4 intra prediction in HEVC was proposed. 

Huang [5] proposed architecture for 4k Ultra HD HEVC 

decoder which has a low circuit area. The architecture 

proposed by Palomino [6] only supports several modes in 

4x4 and 64x64 PU, and the throughput is low. The 

architecture proposed by Liu [7] supports all modes and PU 

sizes for 1080p@30fps HEVC encoder. Another work 

supports full HD is proposed by Zhou [8]. The works [6] [7] 

and [8] are for encoder instead of decoder. In the state of art, 

as there is no architecture for 8k Ultra HD HEVC decoder, 

this work would be the first one. 

To design intra prediction architecture for an 8K Ultra 

HD HEVC decoder, there’re 2 key challenges. The first one 

is that large number of reference pixels for prediction leads 

to a large area of control circuit and of registers. The second 

one is that data dependency between processed TU and 

unprocessed TU reduces the throughput. In this work, the 

issues above are solved by 3 techniques: 1) Cyclic SRAM 

Banks based Parallel Reference Sample Fetching(CSB-

PRSF); 2) 4x4 Block Based Pipelining; 3) Hybrid Data 

Forwarding and Processing Order Rearranging.  

The rest of the paper would be organized as follows. 

Section 2 will briefly introduces intra prediction in HEVC. 

Section 3 will show the details of our proposals. Section 4 

will discuss the implementation result and Section 5 would 

be the conclusion. 

 

2. INTRA PREDICTION IN HEVC 

 

To process each TU by intra-prediction, firstly we get the 

reference samples, which come from the adjacent TUs. And 

then we calculate the predicted samples according to 

reference samples and intra prediction mode. 

Before the reference samples are used for prediction, 

reference substitution and smoothing are applied on them in 

some situations. Reference samples are filtered in some 

modes if block size is 8x8, 16x16 and 32x32. There’re 2 

kinds of filtering method used in HEVC intra-prediction, 

three-tap [1 2 1]/4 FIR filtering and bilinear filtering. The 

bilinear filtering is used in 32x32 block when discontinuity 

is detected. 

35 intra prediction modes can be classified into 3 

classes, which are Planar, DC and angular mode. Each of 
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Fig. 1 The architecture of intra prediction engine 

 

them has a formula shown below. For angular mode, each 

predicted sample is calculated according to the equation 

below: 

 
                                      (1) 

 

For DC mode, the average of the top and left reference 

samples’ value (dcVal) is used as the value of whole PU. 

Additionally, the first column, first row and the top-left 

pixel are filtered when PU’s size is less than 32 in luma. 

For Planar mode, each predicted sample is calculated 

according to the equation below: 

 

          (

      (                   )  

                             

  (                      )   

)

            
                                                             (2) 

 

3. PROPOSED VLSI ARCHITECTURE 

 

For intra prediction of 8K HEVC decoding, high 

computational complexity and high throughput are 2 key 

challenges. According to our analysis, nearly 16 pixels 

processed per cycle must be required, if system’s frequency 

is 397MHz and luma, chroma samples are processed in 

serial. To meet this requirement, three techniques are used 

in this work. The technique described in 3.1 and 3.3 

guarantees that the throughput of 15 pixels/cycle can be met. 

The technique described in 3.2 guarantees necessary 

reference samples can be fetched for prediction in an 

efficient way.  

 

3.1. 4x4 Block Based Pipelining 

 

We choose 4x4 block as a prediction block (PB), because it 

has the same size as minimum TU. Large TUs can be 

predicted by processing the 4x4 PBs inside the TU one by 

one.  

The architecture of intra prediction engine is shown in 

Fig. 1. For each 4x4 prediction block, our engine takes 4  
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Fig. 2 The structure of one PE, designed for Planar, DC and 

angular prediction. 
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Fig. 3 a 4-stage pipeline in Intra prediction engine 

 
stages to process. The whole process is shown in Fig. 3. At 

the 1st stage, according to position of 4x4 block and 

prediction mode, the addresses are generated to get the 

samples for prediction; at 2nd stage, according to addresses, 

reference samples are read from SRAMs and reference 

sample substitution is done before being stored into 

registers; at 3rd stage, reference samples are filtered and  

used for calculating the 4x4 predicted samples. After that 

samples are added to the residuals; at 4th stage, the sum of 

predicted values and residuals are written back to SRAMs. 

Our engine takes 4 stages in pipeline to process a 4x4 

prediction block. Each 4x4 prediction block is processed per 

cycle. For 4/8/16/32/64 PU, it requires 1/4/17/68/272 cycles 

to complete processing. 

In the 4x4 prediction block we proposed, there’re 16 

Prediction Elements (PE) which process 16 samples in 

parallel per cycle. The detailed design of each PE is shown 

in Fig. 2. The inputs of each PE inside the 4x4 block are 

prediction mode, weight and reference index. We generate 2 

LUTs to get the weight and reference index instead of using 

formula to calculate in hardware, in order to reduce the path 

delay. In each predictor, there’re 2 multipliers, 10 adders, 

and 5 multiplexers. For the predictor in 1
st
 row and column, 

4 additional adders and 2 multiplexers are needed for each 

predictor for filtering. “a” is the output of angular prediction 

mode; “d” is the output of Planar; “e” and “b” are the output 

for boundary samples smoothing in DC mode and horizontal, 

vertical modes correspondingly when TU is 4x4 to 16x16. 

The hardware used for boundary samples smoothing are 

only in the first row and first column in the prediction block. 

We make a transformation to the Planar mode’s formula so 

that Planar mode and angular modes can share 2 multipliers. 

By this way 16*2 multipliers (5bit by 8bits) are saved. 
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3.2. Cyclic SRAM Banks based Parallel Reference 

Sample Fetching 

 

In some situations, reference samples substitution and 

smoothing are applied before it can be used for calculation. 

In most cases, 2 smoothed reference samples are necessary 

for calculating a predicted sample. We found that among all 

prediction modes and sizes of TU, 5~11 smoothed reference 

samples are needed for 4x4 block’s prediction. There’re 

three issues that makes it difficult to fetch reference samples 

from SRAMs. Firstly, among angular prediction mode 11 to 

25 in 16, 32 TU, part of the reference samples are 

discontinuous. Secondly, Planar mode needs additional top-

right and bottom left samples for prediction. Thirdly, [1 2 1] 

FIR filtering needs neighboring left and right samples to the 

specific sample to do filtering; while bilinear filtering needs 

4 additional samples. These unsmoothed reference samples 

have to be fetched each cycle for later prediction. As a 

SRAM bank allows only one of its cell’s data to be read by 

a specific address per cycle, collision may occur if some 

reference samples to be used are stored in the same SRAM 

bank but different cell. 

To reduce the probability that collision happens, we 

developed a Parallel Reference Sample Fetching scheme 

based on 8 Cyclic SRAMs Banks to store the reference 

samples. The arrangement of reference samples store in 

SRAM banks is shown in Fig. 4. The width of each SRAM 

banks is 32 bits (4 samples). The cyclic order guarantees 

any neighboring 32 samples can be fetched in the same 

cycle, which reduces the chances of collision. As increment 

of SRAMs will increase the chip’s area and power 

consumption, we found that using 8 SRAM banks is more 

suitable than any other numbers. The top reference samples 

are always stored in even address while the blue italic one in 

odd address. As SRAMs banks are in cyclic order, the 

address and position of reference sample in a specific  
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SRAM cell can be calculated directly by shift and mod 

operation. 

We develop a look-up table (LUT) based Reference 

Sample Position Generator (RSPG) to indicate which 

reference samples are needed for prediction. It includes a 

LUT and the output depends on the position of the 4x4 

prediction block and the prediction mode. The position of  

reference samples can be found in the LUT, no matter 

continuous or discontinuous reference samples. It includes 

the indices and a flag which indicates whether they’re from 

top neighboring samples or left ones. By this way we 

simplify the control circuit and reduce the area of circuit. 

For example, when TU’s size is 16x16, mode is 23, and 

current processing 4x4 block is in bottom-left corner inside 

16x16PU, the smoothed reference samples needed are left 

13,10,6, 3, top-left samples, top 0. As [1 2 1] FIR filtering is 

needed in 16x16 PU, the neighboring left and right samples 

of 13, 12 and 14 need to be fetched from SRAMs. Totally, 

in this cycle reference samples in RAM 4, 5, 6, 7, TL, and 0 

are used. 

In some cases, additional cycles are needed for data 

preparation. Such as in 16x16 TU, 16+1 cycles are needed 

for Planar mode and DC mode. It is used for getting the 

bottom-left and top-right pixels needed in planar mode and 

calculating the un-filtered DC value is needed in DC mode. 

For 32x32, 4 additional cycles are needed for data 

preparation. 

 

3.3. Hybrid Data Forwarding and Block Reordering 

 

After each PU is intra predicted, the values are added by the 

residuals coming from IT/IQ process, and then part of them 

are written back to SRAM as reference samples. For each 

4x4 Prediction block, it takes 4 stages in the pipeline to 

finish.  

The dependency occurs when the next TU needs the 

result of current TU and previous as reference samples. We 

classified it into 2 cases to discuss, one is 4,8 TU and the 

other is 16 and 32 TU. The 4x4 Prediction block processes a 

4x4 TU in a cycle. As is shown in Fig. 3, PB1 is being 

processed at cycle n+2, and PB2 in Z-order is processed at 

cycle n+3. At cycle n+3, PB2 may need the reference 

samples located in PB1, while the result of PB1 cannot be  
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used by PB2 yet, because it is being written back to SRAM. 

If such reference samples read from SRAM, and used by 

PB2, wrong result occurs because reference samples fetched 

from SRAMs are not the reconstructed samples of PB2 we 

expects. Data hazard also occurs when PBk writes back 

reconstructed samples in Mk stage while PBk+2 read the 

same data in Dk+2 stage. For dual ports SRAMs, the read 

address and write address cannot be the same when write 

and read operate at the same cycle. As shown in Fig. 6 (b), 

Because TUII dependents on TUI, the PB5 in TUII may use 

the result of PB1 and PB3 in TUI as reference samples. PB3 

is processed 2 stages earlier than PB5 in TUII, so when PB3 

is in P stage, PB5 is in A stage. PB5 will read the data from 

SRAM where PB3 is to write the reconstructed result. Thus 

data hazard occurs. Such problems also happen when TU 

III’s block PB9 depends on PUII’s PB6, PU IV’s PB13 

depends on PUIII’s PB11 and PUV’s PB17 depends on PUIV’s 

PB15. 

To solve the dependency problem illustrated above, one 

method is to stall the pipeline for 2 cycles, illustrated in Fig. 

5(a). However, it reduces the throughput greatly. Our 

solution, as shown in Fig. 6(a), is to send forward the result 

of “P” stage to registers, and at next cycle, next TU reads 

the reference samples from registers correspondingly, 

instead of waiting for the predicted samples to be written 

into SRAMs. Two data forwarding paths are built, one from 

stage Pk to Pk+1, and the other from stage Pk to Dk+2, as 

shown in Fig. 5(b). 

Though Data Forwarding can solve the dependency 

problem of all other sizes besides 4x4 and 8x8, we do not 

apply it to the others for 2 reasons. Firstly, data forwarding 

makes the pipeline design and implementation more 

complicated and critical delay become longer. Secondly, as 

the processing order inside a TU is not restricted, we have 

alternative to use processing reordering to solve this 

problem, which is easier comparing with Data Forwarding. 

By taking the right-bottom 4x4 block as the start position, 

from right to left, from down to up, and the top-left block as 

the last processed one. The processing order can be referred 

to red numbers in Fig. 4. Block reordering is applied to 

8~32 TU. This method guarantees that the 4x4 block located 

at the right or bottom of TU can be processed earlier, so that 

the data in SRAM could be ready for the use of next TU.  

Table 1 Comparison of HEVC intra prediction architecture for 

video decoding 

 This work TVLSI’13 

[5] 

ASICON

[7] 
ICIP’11 

[4] 

Platform 90nm 40nm 65nm 130nm 

Area 72.1K 27.0K 77K 36.7K 

SRAM 21.0kB 4.9kB -- -- 

Pred. mode All All All 17 

PU Sizes All All All 4x4 

Max. Freq. 

(MHz) 

469 -- 600 150 

Specification

(decoding) 

4320p, 

120fps 

@397MHz 

2160p, 

30fps 

@200MHz 

 

-- 

100M 

samples/s 

@150MHz 

TP(samples/

cycle) 

15 2 16 0.67 

Norm. TP 

(samples/cyc

le/k-gate) 

0.21 0.07 

 

0.21 0.07 

 

4. IMPLEMENTATION RESULT 

 

The proposed VLSI design is implemented by Verilog 

HDL, and synthesized using TSMC 90nm Technology. The 

maximum performance is 469MHz. The size of SRAM 

equals to (1+0.5+0.5)*(number of pixels in width+256) 

Bytes.  If luma and chroma samples are processed in serial, 

pixels to be processed per second equals to 7680* 

4320*120*1.5. The throughput’s requirement can be met 

when system’s frequency is above 397MHz, when 16 

samples are processed per cycle with 1/17 cycles used for 

data preparation. 

Comparing with the work in [5], we process 16 samples 

per cycle, and use a 4-stage pipeline and data forwarding to 

increase the throughput. Also every cycle we only fetch 

several necessary reference samples from SRAM, instead of 

fetching all reference samples at a time and storing them all 

in registers. A high normalized throughput is achieved in 

this work. Firstly, we achieve a high throughput and 

hardware utilization about 94%(16/17). Secondly, more 

reference samples can be reused by 4x4 Block and more 

neighboring predicted samples are probable to share same 

reference samples. At last, reference samples fetching 

scheme help reduce the number of registers for storing 

reference samples and complexity in calculation, so that 

circuit area is reduced. 

 

5. CONCLUSION 

 

In this paper, we present intra prediction hardware 

architecture for HEVC 4320p@120fps decoding. We 

process a 4x4 Prediction Block per cycle. By CSB-PRSF, 

necessary reference samples are fetched from SRAMs at 

each cycle, with a relative low complexity and circuit area. 

By Hybrid Data Forwarding and Block Reordering, we 

eliminate the dependency between PUs to increase 

throughput. Hardware utilization of 94% is achieved and 

only 272 cycles are used to process a CTU in the worst case. 
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