
VLSI ARCHITECTURE OF HEVC INTRA PREDICTION FOR 8K UHDTV APPLICATIONS

Jianbin Zhou, Dajiang Zhou, Heming Sun, Satoshi Goto

Graduate School of Information, Production and Systems, Waseda University

2-7 Hibikino, Kitakyushu 808-0135, Japan.

E-mail: khshu@fuji.waseda.jp

ABSTRACT

This paper presents an efficient VLSI architecture of intra

prediction for 8Kx4K HEVC decoder. It supports all 35

intra prediction modes and prediction sizes ranging from

4x4 to 64x64. This works proposed a Cyclic SRAM Banks

based Parallel Reference Sample Fetching (CSB-PRSF),

which guarantees enough reference samples for prediction

and reduces the number of registers used for storing

reference samples. To guarantee high throughput, 16 pixels

are predicted by 4x4 Block Based Pipelining, and

dependency between neighboring blocks is eliminated by

Hybrid Data Forwarding and Block Reordering.

This architecture is synthesized using 90nm techno-

logy and the maximum working frequency is 469 MHz, with

72.1K gates area. Running at 397MHz, the architecture can

support 4320p@120fps HEVC intra decoding, with full

modes and full sizes.

Index Terms— HEVC decoder, intra prediction, VLSI

architecture, 8K UDTV

1. INTRODUCTION

High Efficiency Video Coding (HEVC) [1][2] is the

emerging video coding standard developed by Joint

Collaborative Team on Video Coding (JCT-VC). It is aimed

at 50% bit rate reduction compared with H.264 standard.

Intra prediction plays an important role in HEVC, saving

about 22%-36% bitrate. Meanwhile, the computational

complexity is increased by some critical changes. Firstly,

the maximum block size for intra prediction is 64x64 in

HEVC instead of 16x16 in H.264. Secondly, the number of

intra prediction modes is 35 in HEVC instead of 10 in H.264.

In HEVC, frames are divided into Coding Units (CU)

and each root CU can be recursively divided into 1 or 4

smaller CUs. Each leaf CU will be processed by Prediction

Units (PU) and Transform Units (TU). PU ranges from

64x64 to 4x4 while TU from 4x4 to 32x32. If a CU is

encoded in intra mode, each TU corresponds to an intra

prediction block with the corresponding PU’s prediction

mode. Therefore, the blocks size is from 4x4 to 32x32 and

there’re 35 prediction modes in intra prediction.

Several designs have already been proposed for HEVC

intra prediction hardware design. Li [4] proposed VLSI

architecture for 4x4 intra prediction in HEVC was proposed.

Huang [5] proposed architecture for 4k Ultra HD HEVC

decoder which has a low circuit area. The architecture

proposed by Palomino [6] only supports several modes in

4x4 and 64x64 PU, and the throughput is low. The

architecture proposed by Liu [7] supports all modes and PU

sizes for 1080p@30fps HEVC encoder. Another work

supports full HD is proposed by Zhou [8]. The works [6] [7]

and [8] are for encoder instead of decoder. In the state of art,

as there is no architecture for 8k Ultra HD HEVC decoder,

this work would be the first one.

To design intra prediction architecture for an 8K Ultra

HD HEVC decoder, there’re 2 key challenges. The first one

is that large number of reference pixels for prediction leads

to a large area of control circuit and of registers. The second

one is that data dependency between processed TU and

unprocessed TU reduces the throughput. In this work, the

issues above are solved by 3 techniques: 1) Cyclic SRAM

Banks based Parallel Reference Sample Fetching(CSB-

PRSF); 2) 4x4 Block Based Pipelining; 3) Hybrid Data

Forwarding and Processing Order Rearranging.

The rest of the paper would be organized as follows.

Section 2 will briefly introduces intra prediction in HEVC.

Section 3 will show the details of our proposals. Section 4

will discuss the implementation result and Section 5 would

be the conclusion.

2. INTRA PREDICTION IN HEVC

To process each TU by intra-prediction, firstly we get the

reference samples, which come from the adjacent TUs. And

then we calculate the predicted samples according to

reference samples and intra prediction mode.

Before the reference samples are used for prediction,

reference substitution and smoothing are applied on them in

some situations. Reference samples are filtered in some

modes if block size is 8x8, 16x16 and 32x32. There’re 2

kinds of filtering method used in HEVC intra-prediction,

three-tap [1 2 1]/4 FIR filtering and bilinear filtering. The

bilinear filtering is used in 32x32 block when discontinuity

is detected.

35 intra prediction modes can be classified into 3

classes, which are Planar, DC and angular mode. Each of

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20141273

RAM
[0]

pixController

LUT_index

LUT_weight

addrSel

4 pixel

output

Y

mode

refPosGen

SRAMs

Ref.idx & flag

Ref.idx & flag 1 pixel

Write back
to SRAM

+Residuals

X

4 pixel 4 pixel 4 pixel 4 pixel 4 pixel 4 pixel 4 pixel

RAM
[1]

RAM
[2]

RAM
[3]

RAM
[4]

RAM
[5]

RAM
[6]

RAM
[7]

RAM
TL

4x4
Prediction

Block

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE
Y

X

11 smoothed reference samples

mode2angle

Ref. sample substitution

Read

xTb yTb

Recon.
xTb
yTb

Y
X

Fig. 1 The architecture of intra prediction engine

them has a formula shown below. For angular mode, each

predicted sample is calculated according to the equation

below:

 (1)

For DC mode, the average of the top and left reference

samples’ value (dcVal) is used as the value of whole PU.

Additionally, the first column, first row and the top-left

pixel are filtered when PU’s size is less than 32 in luma.

For Planar mode, each predicted sample is calculated

according to the equation below:

 (

 ()

 ()

)

 (2)

3. PROPOSED VLSI ARCHITECTURE

For intra prediction of 8K HEVC decoding, high

computational complexity and high throughput are 2 key

challenges. According to our analysis, nearly 16 pixels

processed per cycle must be required, if system’s frequency

is 397MHz and luma, chroma samples are processed in

serial. To meet this requirement, three techniques are used

in this work. The technique described in 3.1 and 3.3

guarantees that the throughput of 15 pixels/cycle can be met.

The technique described in 3.2 guarantees necessary

reference samples can be fetched for prediction in an

efficient way.

3.1. 4x4 Block Based Pipelining

We choose 4x4 block as a prediction block (PB), because it

has the same size as minimum TU. Large TUs can be

predicted by processing the 4x4 PBs inside the TU one by

one.

The architecture of intra prediction engine is shown in

Fig. 1. For each 4x4 prediction block, our engine takes 4

x

+

x

+
16

r1r0

+

weight32

-

w1

Ref[a]

MUX MUX MUX MUX

w0

+

Ref[4+y]

TopR
pix.

- +

Ref[x]
BotL
pix.

-
x<<2

+

j y<<2

+

i

Ref[a+1]

MUX

>>5

a

+

Ref[4+i]

TopL
pix

-

+
b

+

+

1<<log2PUSize

+
Ref[4+i] Ref[j]

<<log2PUSize
>>(log2PUSize+1)

d

output

MUX
c

+
2 unFilDC

<<1

+

e

MUX

>>2

Fig. 2 The structure of one PE, designed for Planar, DC and

angular prediction.

A1

M1

n

D1

P1

n+1 n+2 n+3 n+4 n+5 n+6cycle

A1: get Address for PB1 D1: get data from SRAM And ref. sample substitution
P1: calculate predicted samples and add residuals M1: Write back the result

A2

M2

D2

P2

A3

M3

D3

P3

A4

M4

D4

P4

Fig. 3 a 4-stage pipeline in Intra prediction engine

stages to process. The whole process is shown in Fig. 3. At

the 1st stage, according to position of 4x4 block and

prediction mode, the addresses are generated to get the

samples for prediction; at 2nd stage, according to addresses,

reference samples are read from SRAMs and reference

sample substitution is done before being stored into

registers; at 3rd stage, reference samples are filtered and

used for calculating the 4x4 predicted samples. After that

samples are added to the residuals; at 4th stage, the sum of

predicted values and residuals are written back to SRAMs.

Our engine takes 4 stages in pipeline to process a 4x4

prediction block. Each 4x4 prediction block is processed per

cycle. For 4/8/16/32/64 PU, it requires 1/4/17/68/272 cycles

to complete processing.

In the 4x4 prediction block we proposed, there’re 16

Prediction Elements (PE) which process 16 samples in

parallel per cycle. The detailed design of each PE is shown

in Fig. 2. The inputs of each PE inside the 4x4 block are

prediction mode, weight and reference index. We generate 2

LUTs to get the weight and reference index instead of using

formula to calculate in hardware, in order to reduce the path

delay. In each predictor, there’re 2 multipliers, 10 adders,

and 5 multiplexers. For the predictor in 1
st
 row and column,

4 additional adders and 2 multiplexers are needed for each

predictor for filtering. “a” is the output of angular prediction

mode; “d” is the output of Planar; “e” and “b” are the output

for boundary samples smoothing in DC mode and horizontal,

vertical modes correspondingly when TU is 4x4 to 16x16.

The hardware used for boundary samples smoothing are

only in the first row and first column in the prediction block.

We make a transformation to the Planar mode’s formula so

that Planar mode and angular modes can share 2 multipliers.

By this way 16*2 multipliers (5bit by 8bits) are saved.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20141274

16

0 1 2 3 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

RAM[0] RAM[2] RAM[3] RAM[4] RAM[5] RAM[6] RAM[7]

RAM[7]

RAM[6]

RAM[5]

RAM[4]

RAM[3]

RAM[2]

RAM[1]

RAM[0]

32 33 34 35

32
33
34
35

4 5 6 7

RAM[1] RAM[0]

RAM[7]

The black numbers: indices of upper neighboring

 reference samples.

The blue italic numbers: indices of left neighboring reference

 samples.

The red numbers : the processing order in 16x16 TU

TL

15 14 13

12 11 10 9

8 7 6 5

4 3 2 1

RAM TL

 Fig. 4 Arrangement of reference samples in 8 Cyclic SRAM

Banks and processing order of 4x4 block in 16x16 TU

3.2. Cyclic SRAM Banks based Parallel Reference

Sample Fetching

In some situations, reference samples substitution and

smoothing are applied before it can be used for calculation.

In most cases, 2 smoothed reference samples are necessary

for calculating a predicted sample. We found that among all

prediction modes and sizes of TU, 5~11 smoothed reference

samples are needed for 4x4 block’s prediction. There’re

three issues that makes it difficult to fetch reference samples

from SRAMs. Firstly, among angular prediction mode 11 to

25 in 16, 32 TU, part of the reference samples are

discontinuous. Secondly, Planar mode needs additional top-

right and bottom left samples for prediction. Thirdly, [1 2 1]

FIR filtering needs neighboring left and right samples to the

specific sample to do filtering; while bilinear filtering needs

4 additional samples. These unsmoothed reference samples

have to be fetched each cycle for later prediction. As a

SRAM bank allows only one of its cell’s data to be read by

a specific address per cycle, collision may occur if some

reference samples to be used are stored in the same SRAM

bank but different cell.

To reduce the probability that collision happens, we

developed a Parallel Reference Sample Fetching scheme

based on 8 Cyclic SRAMs Banks to store the reference

samples. The arrangement of reference samples store in

SRAM banks is shown in Fig. 4. The width of each SRAM

banks is 32 bits (4 samples). The cyclic order guarantees

any neighboring 32 samples can be fetched in the same

cycle, which reduces the chances of collision. As increment

of SRAMs will increase the chip’s area and power

consumption, we found that using 8 SRAM banks is more

suitable than any other numbers. The top reference samples

are always stored in even address while the blue italic one in

odd address. As SRAMs banks are in cyclic order, the

address and position of reference sample in a specific

A1

M1

n

D1

P1

n+1 n+2 n+3 n+4 n+5 n+6

M1

P2

M2

D3

P3

M3

A4

D4

P4

M4

…

…

…

…

n n+1 n+5n+2 n+3 n+4 n+6

2 3

cycle

A2

M2

D2

P2

A1

D1

P1

A2

D2

A3

cycle

(a)

(b)

A1: get Address for PB1
D1: get data from SRAM and
reference sample substitution for PB1
P1: calculate predicted samples and
add residuals for PB1
M1: Write back the result

1

…

 Fig. 5 (a) stall 2 cycles to solve dependency problem in 4x4 TU

(b) Use Data forwarding to solve dependency problem in 4,8 TU

SRAM cell can be calculated directly by shift and mod

operation.

We develop a look-up table (LUT) based Reference

Sample Position Generator (RSPG) to indicate which

reference samples are needed for prediction. It includes a

LUT and the output depends on the position of the 4x4

prediction block and the prediction mode. The position of

reference samples can be found in the LUT, no matter

continuous or discontinuous reference samples. It includes

the indices and a flag which indicates whether they’re from

top neighboring samples or left ones. By this way we

simplify the control circuit and reduce the area of circuit.

For example, when TU’s size is 16x16, mode is 23, and

current processing 4x4 block is in bottom-left corner inside

16x16PU, the smoothed reference samples needed are left

13,10,6, 3, top-left samples, top 0. As [1 2 1] FIR filtering is

needed in 16x16 PU, the neighboring left and right samples

of 13, 12 and 14 need to be fetched from SRAMs. Totally,

in this cycle reference samples in RAM 4, 5, 6, 7, TL, and 0

are used.

In some cases, additional cycles are needed for data

preparation. Such as in 16x16 TU, 16+1 cycles are needed

for Planar mode and DC mode. It is used for getting the

bottom-left and top-right pixels needed in planar mode and

calculating the un-filtered DC value is needed in DC mode.

For 32x32, 4 additional cycles are needed for data

preparation.

3.3. Hybrid Data Forwarding and Block Reordering

After each PU is intra predicted, the values are added by the

residuals coming from IT/IQ process, and then part of them

are written back to SRAM as reference samples. For each

4x4 Prediction block, it takes 4 stages in the pipeline to

finish.

The dependency occurs when the next TU needs the

result of current TU and previous as reference samples. We

classified it into 2 cases to discuss, one is 4,8 TU and the

other is 16 and 32 TU. The 4x4 Prediction block processes a

4x4 TU in a cycle. As is shown in Fig. 3, PB1 is being

processed at cycle n+2, and PB2 in Z-order is processed at

cycle n+3. At cycle n+3, PB2 may need the reference

samples located in PB1, while the result of PB1 cannot be

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20141275

2

3 4

5

:dependent pixels

a b
: B depends on A

1

4 3

2 1

8 7

6 5

16 15

14 13

12 11

10 9

I II

III IV

Fig. 6(a) Fig. 6(b)

 Dependency of 4x4 TUs Dependency of 8x8 TUs

used by PB2 yet, because it is being written back to SRAM.

If such reference samples read from SRAM, and used by

PB2, wrong result occurs because reference samples fetched

from SRAMs are not the reconstructed samples of PB2 we

expects. Data hazard also occurs when PBk writes back

reconstructed samples in Mk stage while PBk+2 read the

same data in Dk+2 stage. For dual ports SRAMs, the read

address and write address cannot be the same when write

and read operate at the same cycle. As shown in Fig. 6 (b),

Because TUII dependents on TUI, the PB5 in TUII may use

the result of PB1 and PB3 in TUI as reference samples. PB3

is processed 2 stages earlier than PB5 in TUII, so when PB3

is in P stage, PB5 is in A stage. PB5 will read the data from

SRAM where PB3 is to write the reconstructed result. Thus

data hazard occurs. Such problems also happen when TU

III’s block PB9 depends on PUII’s PB6, PU IV’s PB13

depends on PUIII’s PB11 and PUV’s PB17 depends on PUIV’s

PB15.

To solve the dependency problem illustrated above, one

method is to stall the pipeline for 2 cycles, illustrated in Fig.

5(a). However, it reduces the throughput greatly. Our

solution, as shown in Fig. 6(a), is to send forward the result

of “P” stage to registers, and at next cycle, next TU reads

the reference samples from registers correspondingly,

instead of waiting for the predicted samples to be written

into SRAMs. Two data forwarding paths are built, one from

stage Pk to Pk+1, and the other from stage Pk to Dk+2, as

shown in Fig. 5(b).

Though Data Forwarding can solve the dependency

problem of all other sizes besides 4x4 and 8x8, we do not

apply it to the others for 2 reasons. Firstly, data forwarding

makes the pipeline design and implementation more

complicated and critical delay become longer. Secondly, as

the processing order inside a TU is not restricted, we have

alternative to use processing reordering to solve this

problem, which is easier comparing with Data Forwarding.

By taking the right-bottom 4x4 block as the start position,

from right to left, from down to up, and the top-left block as

the last processed one. The processing order can be referred

to red numbers in Fig. 4. Block reordering is applied to

8~32 TU. This method guarantees that the 4x4 block located

at the right or bottom of TU can be processed earlier, so that

the data in SRAM could be ready for the use of next TU.

Table 1 Comparison of HEVC intra prediction architecture for

video decoding

 This work TVLSI’13

[5]

ASICON

[7]
ICIP’11

[4]

Platform 90nm 40nm 65nm 130nm

Area 72.1K 27.0K 77K 36.7K

SRAM 21.0kB 4.9kB -- --

Pred. mode All All All 17

PU Sizes All All All 4x4

Max. Freq.

(MHz)

469 -- 600 150

Specification

(decoding)

4320p,

120fps

@397MHz

2160p,

30fps

@200MHz

--

100M

samples/s

@150MHz

TP(samples/

cycle)

15 2 16 0.67

Norm. TP

(samples/cyc

le/k-gate)

0.21 0.07

0.21 0.07

4. IMPLEMENTATION RESULT

The proposed VLSI design is implemented by Verilog

HDL, and synthesized using TSMC 90nm Technology. The

maximum performance is 469MHz. The size of SRAM

equals to (1+0.5+0.5)*(number of pixels in width+256)

Bytes. If luma and chroma samples are processed in serial,

pixels to be processed per second equals to 7680*

4320*120*1.5. The throughput’s requirement can be met

when system’s frequency is above 397MHz, when 16

samples are processed per cycle with 1/17 cycles used for

data preparation.

Comparing with the work in [5], we process 16 samples

per cycle, and use a 4-stage pipeline and data forwarding to

increase the throughput. Also every cycle we only fetch

several necessary reference samples from SRAM, instead of

fetching all reference samples at a time and storing them all

in registers. A high normalized throughput is achieved in

this work. Firstly, we achieve a high throughput and

hardware utilization about 94%(16/17). Secondly, more

reference samples can be reused by 4x4 Block and more

neighboring predicted samples are probable to share same

reference samples. At last, reference samples fetching

scheme help reduce the number of registers for storing

reference samples and complexity in calculation, so that

circuit area is reduced.

5. CONCLUSION

In this paper, we present intra prediction hardware

architecture for HEVC 4320p@120fps decoding. We

process a 4x4 Prediction Block per cycle. By CSB-PRSF,

necessary reference samples are fetched from SRAMs at

each cycle, with a relative low complexity and circuit area.

By Hybrid Data Forwarding and Block Reordering, we

eliminate the dependency between PUs to increase

throughput. Hardware utilization of 94% is achieved and

only 272 cycles are used to process a CTU in the worst case.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20141276

6. REFERENCE

[1] “H.265: High efficiency video coding”, ITU-T Rec. Apr,

2013.

[2] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand,

“Overview of the high efficiency video coding (HEVC)

standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,

no. 12, pp. 1649–1668, Dec. 2012.

[3] J. Lainema, F. Bossen, W.-J. Han, J. Min, and K. Ugur, “Intra

coding of the HEVC standard,” IEEE Trans. Circuits Syst.

Video Technol., vol. 22, no. 12, pp. 1792–1801, Dec. 2012.

[4] F. Li, G. Shi, and F. Wu, “An efficient VLSI architecture for

4x4 intra prediction in the high efficiency video coding

(HEVC) standard,” in Proc. 18th IEEE Int. Conf. Image

Process., Sep. 2011, pp. 373–376.

[5] C.-T. Huang, M. Tikekar, A.P. Chandrakasan, "Memory-

Hierarchical and Mode-Adaptive HEVC Intra Prediction

Architecture for Quad Full HD Video Decoding," Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on ,

vol.PP, no.99, pp.1,1, 0

[6] D. Palomino, F. Sampaio, L. Agostini, S. Bampi, & A. Susin

(2012, September). “A memory aware and multiplierless

VLSI architecture for the complete Intra Prediction of the

HEVC emerging standard.” In Image Processing (ICIP), 2012

19th IEEE International Conference on (pp. 201-204). IEEE.

[7] C. Liu, W. Shen, T. Ma, Y. Fan, X. Zeng “A highly pipelined

VLSI architecture for all modes and block sizes intra

prediction in HEVC encoder," ASIC (ASICON), 2013, vol.,

no., pp.1,4, 28-31 Oct. 2013

[8] N. Zhou, D. Ding, L. Yu. “On hardware architecture and

processing order of hevc intra prediction module.” 30th

Picture Coding Symposium (PCS), 2013,vol., no., pp.101,104,

8-11 Dec. 2013

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20141277

