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ABSTRACT

In this paper, a novel local pattern descriptor generated by

the proposed local vector pattern (LVP) in high-order deriva-

tive space is presented for face recognition. The proposed

vector representation of the referenced pixel is generated to

provide the one-dimensional structure of micropatterns. To

effectively extract more detailed discriminative information

in a given sub-region, the vector of LVP is refined by varying

local derivative directions from the nth-order LVP in (n −
1)th-order derivative space. The proposed LVP is compared

with the existing local pattern descriptors including local bi-

nary pattern (LBP), local derivative pattern (LDP), and local

tetra pattern (LTrP) to evaluate the performances from input

grayscale face images. Extensive experiments conducting on

benchmark face image databases, FERET and Extended Yale

B, demonstrate that the proposed LVP in high-order deriva-

tive space indeed performs much better than LBP, LDP and

LTrP for face recognition.

Index Terms— Local pattern descriptors, local vector

pattern (LVP), comparative space transform (CST), face

recognition

1. INTRODUCTION

Recently, face recognition attracts extensive attention in real-

world applications [1], [2]. It is well known that face fea-

ture description significantly affects the face recognition per-

formance. It has been admitted that the three critical issues

for developing a good face descriptor are: (1) maximize the

margin between inter-person, (2) minimize the correlation be-

tween intra-person, and (3) can be extracted with low com-

putational cost from original input data. However, a good

recognition result can not be anticipated by using unsatisfac-

tory face features, even though adopting the optimum classi-

fier. The existing face descriptions attempt to incorporate and

balance the above criteria to produce more prominent recog-

nition results.

Primarily, the desirable components of well-recognized

face features in face recognition system are comprised mainly

of local pattern descriptors [3], [4], Eigenface [5], Fisher-

face [6], and manifold-based learning methods [7], [8]. These

methods are inclined to effectively extract the representation

and discriminate classes from original input images. In partic-

ular, the importance of local pattern descriptors has been well

recognized in face recognition society because they can suc-

cessfully and effectively represent the spatial structure infor-

mation of an input image to generate distinguishing local fea-

tures, such as local binary pattern (LBP) [9], [10] which has

been successfully applied to facial application for achieving

good recognition results permitted with computational sim-

plicity as well as low-dimensional space requirements. Mu-

rala et al. proposed the local tetra pattern (LTrP) to extend

the two distinct values to four distinct values by using the two

high-order derivative direction patterns for generating more

effective information [11].

In this paper, we propose a novel pattern descriptor, called

local vector pattern (LVP), for use in face recognition. We

mainly aim at enhancing the proposed method with respect

to the two problems (high redundancy and feature length in-

creasing) from LTrP [11]. To resolve these two problems, we

develop a novel vector representation to represent the one-

dimensional direction and structure information of the face

texture. Moreover, we develop a novel coding scheme, com-

parative space transform (CST), in LVP encoding to encode a

pairwise direction of vector. Furthermore, the proposed CST

uses a designed dynamic linear decision function to suppress

the slight noise influence, such as intensity change in a flat

surface. In our work, the LVP can also be applied in various

high-order derivative spaces to refine the vector representa-

tion for obtaining a more compact and discriminative local

pattern descriptor.

The rest of this paper is organized as follows. The pro-

posed local vector pattern (LVP) and coding scheme (compar-

ative space transform, CST) are presented in Section II. The

extension of LVP in high-order derivative space is addressed

in Section III. Experimental results conducted on FERET [12]

and Extended Yale B [13], [14] databases in the comparison

study are demonstrated in Section IV. Finally, conclusions are

given in Section V.
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Fig. 1. (a) Adjacent pixels of Vβ,D(Gc) with different dis-

tances along each direction. (b) The 8-neighborhood sur-

rounding Gc.

2. THE PROPOSED LOCAL PATTERN

DESCRIPTOR

The proposed Local Vector Pattern (LVP) generates the mi-

cropatterns encoded through the pairwise directions of vec-

tor by using an effective coding scheme called Comparative

Space Transform (CST) for successfully extracting distinctive

information. In addition to the proposed LVP and CST, the

histogram intersection method adopted in existing local pat-

tern descriptors for evaluating the similarity between the spa-

tial histograms of two distributions extracted from the LVP is

also addressed.

2.1. Local Vector Pattern

The proposed local vector pattern (LVP) is designed to rep-

resent the one-dimensional direction and structure informa-

tion of local texture by calculating the values between the ref-

erenced pixel and the adjacent pixels with diverse distances

from different directions. The detail description is presented

as follows.

Given a local sub-region I , the direction value of a vector

is denoted as Vβ,D(Gc) as illustrated in Fig. 1(a). Let Gc

denote the referenced pixel marked with red in I , β be the

index angle of the variation direction, and D be the distance

between the referenced pixel and its adjacent pixels along the

β direction. For illustration purpose, the distance D = 1 is

marked with yellow, D = 2 is marked with green, and D = 3
is marked with blue. The direction value of a vector at the

referenced pixel Gc can be defined as

Vβ,D(Gc) = (I(Gβ,D)− I(Gc)). (1)

The LVP in β direction of vector at Gc, LV Pβ(Gc), is

encoded as

LV Pβ(Gc) =

P∑

p=1

f(Vγ,D(Gp),Vγ,D(Gc))×2
p−1|γ∈{β,β+45◦},P=8 (2)

where f(·, ·) represents the proposed CST which can be for-

mally defined as

f (Vγ,D(Gp),Vγ,D(Gc)) |γ∈{β,β+45◦}

=

{
1,if Vβ+45◦,D(Gp,R)−

(
Vβ+45◦,D(Gc)

Vβ,D(Gc)
×Vβ,D(Gp,R)

)
≥0

0,else.

(3)

Finally, the LVP at referenced pixel Gc, LV P (Gc), is de-

fined as the concatenation of the four 8-bit binary patterns

LVPs.

LV P (Gc) = {LV Pβ(Gc)|β = 0◦, 45◦, 90◦, 135◦}. (4)

2.2. Coding Scheme - Comparative Space Transform

In our proposed coding scheme, Comparative Space Trans-

form (CST), the LVPs generate the binary code by using CST

that design the weight vectors of dynamic linear decision

function to separate the neighborhoods with the pairwise di-

rection of vector in the two-dimensional distribution. Thus,

the basic weight vectors of dynamic linear decision function

can be designed as the following form

w(Gc) =

(
1,−

Vβ+45◦,D(Gc)

Vβ,D(Gc)

)T

(5)

where the first component of weight vectors w is assigned

to “1” that represents the original (β + 45◦)-direction value

of neighborhood pixel Gp, the second component of weight

vectors w which is the transform ratio calculated by using the

pairwise direction of vector of the referenced pixel Gc is used

to transform the β-direction value of neighborhood pixel Gp

to comparative space (β + 45◦)-direction.

Therefore, the pairwise direction values of one of the sur-

rounding neighborhoods can be formed as

x(Gp) = (Vβ+45◦,D(Gp), Vβ,D(Gp))
T

(6)

where x called the augmented pattern represents the pairwise

direction values of vector of neighborhood pixels Gp.

Since the binary code can be considered as a two-class

case by using dynamic linear decision function to calculate

the CST values of the neighborhoods for encoding a bit string

via the sign function, we refer the context of w and x in (5)

and (6) to formulate the dynamic linear decision function as

CST (Gp) = w(Gc)
T · x(Gp). (7)

Note that the context of w, x and CST can be reformed

depending on the pairwise direction values of vector of the

referenced and its neighborhoods to dynamic linear decision

function for generating the various discriminative features of

LVPs.
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2.3. Measurement of Similarity

In out work, the spatial histogram is adopted for modeling the

distribution of the proposed LVP in a given local sub-region.

Given an image I in β direction of vector, the micropatterns

of LV Pβ are categorized into various parts corresponding to

the sub-region Mi which is denoted by spatially dividing the

given image into regular sub-regions M1, . . . ,ML, where L

represents the amount of sub-regions. Therefore, the spatial

histograms HLV P (i, β) can be defined as

HLV P (i, β) = {HLV Pβ
(Mi)|i = 1, 2, . . . , L;

β = 0◦, 45◦, 90◦, 135◦} (8)

where HLV Pβ
(Mi) is the LVP spatial histogram in β di-

rection of vector which is extracted from the local sub-

region Mi, and HLV P is acquired as the concatenation of

the HLV Pβ
(Mi).

3. EXTENDING LOCAL VECTOR PATTERN TO

HIGH-ORDER DERIVATIVE SPACE

The existing local pattern descriptors, local binray pattern

(LBP), local derivative pattern (LDP) [15] and local tetra

pattern (LTrP), extract local features using various high-order

derivative directions from grayscale images. In this paper, the

vector of LVP is further refined for extracting more detailed

discriminative features in high-order derivative space with

the proposed CST coding scheme.

Given a local sub-region I , the vector is refined with the

first-order derivative along 0◦, 45◦, 90◦ and 135◦ directions,

denoted as V̂ 1
β,α(Gc) where α = 0◦, 45◦, 90◦, 135◦, to calcu-

late the second-order LVP in the first-order derivative space.

Let Gc be a referenced pixel in I . The four first-order deriva-

tive directions of vector at Gc can be defined as

V̂ 1
β,0◦(Gc) = Vβ,D(G1)− Vβ,D(Gc) (9)

V̂ 1
β,45◦(Gc) = Vβ,D(G2)− Vβ,D(Gc) (10)

V̂ 1
β,90◦(Gc) = Vβ,D(G3)− Vβ,D(Gc) (11)

V̂ 1
β,135◦(Gc) = Vβ,D(G4)− Vβ,D(Gc) (12)

where G1, G2, G3 and G4 are the derivative pixels of the

referenced pixel Gc in 0◦, 45◦, 90◦ , and 135◦ directions,

respectively as shown in Fig. 1(b).

Similar to the second-order LVP in the first-order deriva-

tive space, the vectors can be refined with the second-order

derivative along 0◦, 45◦, 90◦ and 135◦ directions, denoted as

V̂ 2
β,α(Gc) where α = 0◦, 45◦, 90◦, 135◦, which is defined as

V̂ 2
β,0◦ (Gc) = V̂ 1

β,0◦ (G1)− V̂ 1
β,0◦ (Gc) (13)

V̂ 2
β,45◦ (Gc) = V̂ 1

β,45◦ (G2)− V̂ 1
β,45◦ (Gc) (14)

V̂ 2
β,90◦ (Gc) = V̂ 1

β,90◦ (G3)− V̂ 1
β,90◦ (Gc) (15)

V̂ 2
β,135◦ (Gc) = V̂ 1

β,135◦(G4)− V̂ 1
β,135◦(Gc) . (16)

In a general formulation, the nth-order LVP in the (n −
1)th-order derivative space can be defined by refining the vec-

tor with the (n− 1)th-order derivative along 0◦, 45◦, 90◦ and

135◦ directions as

LV Pn
β,α(Gc) =

P∑

p=1

f
(
V̂ n−1
γ,α (Gp),V̂

n−1
γ,α (Gc)

)
×2p−1|γ∈{β,β+45◦},P=8 (17)

where V̂ n−1
β,α (Gc) is the refined vector with the (n−1)th-order

derivative in β direction of vector and α derivative direction

at Gc.

The nth-order LVP in (n− 1)th-order derivative space is

defined as

LV Pn(Gc)

= {LV Pn
β,α(Gc)|β = 0◦, 45◦, 90◦, 135◦;

α = 0◦, 45◦, 90◦, 135◦}. (18)

Similar to the first-order LVP in the zero-order derivative

space, the spatial histogram of the nth-order LVP in the (n−

1)th-order derivative space ĤLV P (i, β, α) is defined as

ĤLV P (i, β, α)

= {ĤLV Pβ,α
(Mi)|i = 1, 2, . . . , L;

β = 0◦, 45◦, 90◦, 135◦;

α = 0◦, 45◦, 90◦, 135◦} (19)

where ĤLV Pβ,α
(i, β, α) is the high-order LVP spatial his-

togram in β direction of vector and α derivative direction

which is extracted from the local sub-region Mi.

The merits of our proposed LVP comparing with the other

local pattern descriptors can be summarized as follows:

1. The LVP reduces the feature length better than the LTrP

by using the proposed coding scheme CST with pair-

wise direction of vector which is used to encode the

LVP.

2. The nth-order LVP adopts both one-dimensional and

two-dimensional direction information to extract the

local patterns, whereas both nth-order LDP and nth-

order LTrP only use one-dimensional direction in-

formation. Hence, the nth-order LVP provides more

detailed discriminative features than the nth-order LDP

and nth-order LTrP.

4. EXPERIMENTAL RESULTS

In this section, various experiments were conducted to

demonstrate the performance of the proposed and compar-

ative methods. In our experiments, two publicly available

face databases, FERET [12], and Extended Yale B [13], [14]
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Fig. 2. Comparative recognition accuracies between different

orders of LBP, LDP, LTrP and LVP on the FERET data sets.

(a) Result conducting on Fb, (b) result conducting on Fc, (c)

result conducting on DupI, (d) result conducting on DupII.

databases, are used. All the original facial images were nor-

malized and cropped to 64 × 64 except that the Extended Yale

B database was normalized to 96 × 84 based on the location

of the two eyes. Moreover, each image is partitioned with 4

× 4 sub-regions and uses the uniform quantization method to

reduce the number of histogram bins in each sub-region from

256 to 8.

4.1. Results on FERET Database

In this experiment, the FERET [12] face database is used to

evaluate the comparative performances between the proposed

LVP and the other methods for face recognition. The FERET

database provides the evaluation protocol as gallery (Fa) and

probe sets (Fb, Fc, DupI and DupII) that are used to evalu-

ate the performance of the above methods. For each probe

image, the framework selects the nearest image by measuring

the similarity computed using histogram intersection.

The LVP generates a complete binary code of micropat-

terns by using various pairwise directions of vector which is

computed based on the parameter D, and then we test the

parameter D to evaluate the performance of the proposed

method. Experimental results illustrated in Fig. 2 demon-

strates that the recognition rate is significantly affected by

parameter D. In LVP, the performance drops when parameter

D = 3 in different orders of derivative space. It is due to the

fact that the correlation of vector decreases when the value of

parameter D increases. In addition, the feature length of the

first-order LVP is 4 times of the LBP, and the feature length

of the LVP is 4 and 16/13 times of the LDP and the LTrP in

high-order derivative space respectively. Although the fea-

ture length of the LVP is slightly higher, the performance is

significantly improved in terms of recognition rate comparing

with the other methods. Moreover, the LVP exhibits better

performance than the other methods even under the same
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Fig. 3. Comparative average recognition accuracies between

the different orders of LBP, LDP, LTrP and LVP on the Ex-

tended Yale B database.

order derivative space. To be more precise, the LVP can ex-

tract more detailed discriminative information than the other

comparative methods.

4.2. Results on Extended Yale B Database

In our experiments, the Extended Yale B face database is also

used to demonstrate the comparative performances between

the proposed LVP and the other methods under severe illumi-

nation variations. The experimental database contains 2,432

frontal facial images of 38 subjects with 64 different illumina-

tion variations. Each image from the subject in the database

is used as the gallery set and the others as the probe set. Then,

we perform 64 run of tests for each method with 1-NN classi-

fier. The experimental results reporting the comparative aver-

age recognition rates and standard deviations of the LVP and

the other methods are illustrated in Fig. 3. Apparently, the

LVP significantly improves the performance of face recogni-

tion than the other existing methods even under severe illumi-

nation variations.

5. CONCLUSIONS

In this paper, a novel local pattern descriptor is devised and

investigated for generating effective and powerful represen-

tation for face recognition. First of all, we develop a novel

vector representation, Local Vector Pattern (LVP), to repre-

sent the one-dimensional direction and structure information

of the face texture. Moreover, a novel coding scheme, Com-

parative Space Transform (CST), in LVP encoding is pro-

posed to encode a pairwise direction of vector for reducing

the feature length and high redundancy resulting from LTrP.

The proposed LVP can also be applied in various high-order

derivative spaces to refine the vector representation for obtain-

ing a more compact and discriminative local pattern descrip-

tor. The measurement of similarity that performs histogram

intersection is adopted to evaluate the performance with two

public face databases including FERET and Extended Yale

B databases. Experimental results demonstrate that the pro-

posed method outperforms several state-of-the-art local pat-

tern descriptors in face recognition.
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